Genomics & Informatics Vol. 4(3) 110-117, September 2006

Significant Gene Selection Using Integrated Microarray Data

Set with Batch Effect

Ki Yeol Kim', Hyun Cheol Chung?3*#4% Hei Cheul
Jeung?, Ji Hye Shin*, Tae Soo Kim** and Sun
Young Rha®**

Oral Cancer Research Institute, Yonsei University College
of Dentistry, 2Department of Internal Medicine, Yonsei
University College of Medicine, *Brain Korea 21 Project
for Medical Science, Yonsei University College of Medicine,
‘Cancer Metastasis Research Center, Yonsei University
College of Medicine, *Yonsei Cancer Center, Yonsei University
College of Medicine, 134 Shinchon-Dong, Seodaemun-Ku,
Seoul 120-752, Korea

Abstract

In microarray technology, many diverse experimental
features can cause biases including RNA sources,
microarray production or different platforms, diverse
sample processing and various experiment protocols.
These systematic effects cause a substantial obstacle in
the analysis of microarray data. When such data sets
derived from different experimental processes were used,
the analysis result was almost inconsistent and it is not
reliable. Therefore, one of the most pressing challenges in
the microarray field is how to combine data that comes from
two different groups. As the novel trial to integrate two data
sets with batch effect, we simply applied standardization
to microarray data before the significant gene selection. In
the gene selection step, we used new defined measure that
considers the distance between a gene and an ideal gene
as well as the between-slide and within-slide variations.
Also we discussed the association of biological functions
and different expression patterns in selected discriminative
gene set. As a result, we could confirm that batch effect was
minimized by standardization and the selected genes from
the standardized data included various expression patterns
and the significant biological functions.
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Introduction

In ‘microarray technology, many diverse experimental
features can cause experimental biases including RNA
sources and quality, microarray production or different
platforms. Additionally, samples can be collected and
processed at different institutions and assayed using
different array hybridization protocols. These systematic
effects causing diverse variations present a substantial
obstacle to the analysis of microarray data. Due to the
limited numbers of miroarray experiments, however,
sometimes the indication to use whole data regardless
of platforms is increasing. When such data sets derived
from different experimental processes were used, the
result of analysis was often inconsistent with little
reliable information. Therefore, one of the most pressing
challenges in the microarray field is how to combine the
data that comes from the two different groups.

Most existing studies that have analyzed muiltiple
independently collected microarray data sets have
focused on the differential expressions, comparing two
or more similar data sets to find the genes that
distinguish different groups of samples (Breitling et al.,
2002; Rhodes et al., 2002; Yuen et al., 2002; Choi et al.,
2003; Detours et al., 2003; Ramaswamy et al., 2003;
Sorlie et al., 2003; Xin et al., 2003). Another type of
comparison is exemplified by a study that examined the
variability of expression for the individual gene in several
human and mouse data sets (Lee et al., 2002). These
studies have exploited the availability of multiple data
sets to identify more robust sets of genes than would be
found using a single data set.

Recently, the integration of the data sets before the
significant gene selection has been introduced using a
method by correcting systematic bias of the data sets,
Singular Value Decompositions (SVDs) in the yeast cell
cycle experiments (Alter et al., 2000), and in a data set
containing many soft tissue tumors (Nielsen et al., 2002).
It has been suggested that SVD is an inappropriate
method when the magnitude of the systematic effect
variation is similar to other components of variations,
although SVD is a method to find directions of large
variation for removal of systematic effects (Benito et al.,
2004). Distance Weighted Discrimination (DWD), a
modified form of SVM for the adjustment of systematic
effects eliminated source effect and showed the good
performance (Benito et al., 2004). However, it still could



not correct some problem such as dispersion of different
data sets. Moreover, previous studies have not been
discussed the biological significance for evaluation of
integration method.

Here, we suggested a method which effectively integrates
the different experimental features and selected the
discriminative gene set from the integrated data set using
the unique gene selection method, and finally discussed
biological significance of selected gene set.

Materials and Methods

Data sets

A microarray data set used in this study was consisted of
5 experimental groups to understand the molecular
mechanism of tumor angiogenesis in vitro. The HUVEC
(Human Umbilical Vein Endothelial Celis) were obtained
from ATCC (American Tissue Culture Collection, USA)
and cultured following the recommended guidelines.
The HUVEC were cultured in 5 different experimental
conditions including 1) with serum, 2) upon the matrigel
as an extracellular matrix, 3) with co-culturing with
YCC-3 gastric cancer cells, which is established from
the ascites of Korean advanced gastric cancer patient in
the Cancer Metastasis Research Center (CMRC,
Yonsei University College of Medicine, Seoul, Korea), 4)
without serum, and 5) combination of matrigel and
co-culturing with YCC-3 cells.

The cDNA microarray was performed using human
cDNA chips (CMRC-GT, Seoul, Korea) with 17664
genes in 2 batches, which were spotted in 2 different
time with the same cDNA clones. cDNA microarray
experiments were performed in triplicates following the
established protocol of CMRC in a reference design with
the Yonsei Reference RNA of 11 cancer cell line pooled
RNA (CMRC, Seoul, Korea, Kim et al., 2005). This data
set included missing entries in the range of 349 to 785 for
each experiment, and 16466 genes without missing
entries were used for further analysis.

Data normalization

We normalized expression intensities so that the
intensities or log-ratios have similar distributions across
a series of arrays. The method used in this study is that
the MAD (median-absolute-deviation) scale estimator is
replaced with the median-absolute-value and the
A-values') are normalized as well as the M-values2).

1) A=log;R-log.G
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Within-slide normalization transforms expression
values to make intensities consistent within each array
and between-slide normalization transforms expression
values to achieve consistency between arrays.
Normalization between arrays is usually, but not
necessarily, applied after normalization within arrays.
We applied between-slide normalization to expression
data because there were different dispersions between
arrays after within-slide normalization. We executed
normalization by using 'limma’ library of R package
(http://www.r-project.org).

Standardization of expression data

In order to reduce the bias which can be occurred in each
gene expression from different batches, we standardized
gene expression ratio to a mean £ s.d. of 0 £ 1 in each
batch respectively. The standardized expression ratio Zij
is calculated as following.

where X;; is the expression level of i gene in j”
experiment.
X, is the mean expression level of i gene.
Denominator is standard deviation of expression
levels of ith gene.
N, is the number of experiments of i gene.

Significant gene selection

We selected discriminative genes that differently
expressed in various experimental groups after the
normalization and standardization of microarray data set.
The parametric statistical methods, including t-test, were
not appropriate to the current data set because the
replications of data were not sufficient enough to assume
any specific distribution of data. Even nonparametric
method, requiring at least 5 replications of data (Kaniji,
1993), was not applicable. Therefore, we defined a new
measure for the discriminative gene selection, based on
the variation rather than a mean difference between slides.

Estd(:cik)/std(x_k)

where z, is mean expression of k" experimental group.
k

2) R (Red Intensity) = (Rioreground-Rbackground),
G (green Intensity) = (Gforeground'Gbackground),
M=

(log2R+l0g.G)/2
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std(z,)is between-slide variation.
std(z,,)is within-slide variation of :""gene in £
experimental group.

The small value of this measure suggests that the
expression values of the i** gene have small variation in
each experimental group and large difference between
different experimental groups at the same time.
Therefore it implies that the i** gene is discriminative.

In the selection of significant genes which have clear
expression pattern-over expressed or under expressed -
in a specific experimental group, we defined the ideal
genes expressed in a specific experimental group.
When we defined new measure, we considered the
distance between these ideal genes and each gene, in
addition to variation of expression values of a gene. It
resulted that the selected genes with smaller within-slide
closed to expression levels of ideal genes. We could
define three ideal genes in the case of three
experimental groups as following.

(1 (—1 [—1

1 -1 -1 } Experimental group 1
1 -1 -1
-1 1 -1
Igene, = |—1|.lgene, = | 1 |,Jgene; = |—1 } Experimental group 2
-1 1 -1
-1 -1 1
-1 -1 1 } Experimental group 3
—14 —1] 1]

The new metric, MM, was defined as following and
calculated for each gene.

MM (3) =dist(g (3), Igene) X Estd(a:ik) / 5,d(avk)

where g,is the expression of " gene.
dist(g (i), Igene) is distance between each ith gene
and ideal target genes.

A gene with small MM is considered as discriminative
and it is over-expressed or under-expressed in experimental
groups.

We evaluated the selected gene set by classification
accuracy and used Random Forest algorithm (RF,
Breiman, 2001). We used RF program in R package
(http://www.r-project.org) with the following steps.

(1) Generate n datasets of bootstrap samples {B1, Bz,
~~~~~~ , Bn} by allowing repetition of the same sample.
(2) Use each sample By to construct a Tree classifier
Tk to predict those samples that are not in By
,called out-of-bag (OOB) samples. These

predictions are called out-of-bag estimators.

(3) Final prediction is the average of out-of-bag
estimators over all bootstrap samples and we get
average of them which is overall classification
error (OOB error).

Annotation of selected genes

We investigated the significance of biological functions of
selected discriminative genes that classified five
experimental groups accurately. These genes were
separated into five gene clusters by k-means3) clustering
method under the assumption that they have five different
expression patterns because they classified five
experimental groups exactly. We used EASE (Expression
Analysis Systematic Explorer, htfp.//david.niaid.nih.gov/
david/) to analyze the significance of biological functions
for five gene clusters.

Results and Discussion

Fig. 1 shows the result of within and between-slide normal-
ization of microarray data.

The last six boxplots in Fig. 1b had larger inter-quartile
range {IQR) than the other box plots. It means there were
larger variations in the 9-15" experiments than the other
experiments when only within-slide normalization was
applied to data set. Those experiments were processed
experimentally in different batches and this problem was
removed by between-slide normalization {(Fig. 1c).

M.YCC3 and woSerum experimental groups were
experimentally processed in the same batch differing from
the remainder groups. When we applied unsupervised
clustering method with whole data set, three experimental
groups (HUVEC, Matrigel, YCC3) and two experimental
groups (woSerum, M.YCC3) were separated and groups
in same batch were fastened together. Therefore, we
could confirm that some batch effect exists in the data set
(Fig. 2a). With standardization of data, HUVEC and
woSurum experimental groups from different batches
were fastened together and other experimental groups
were well intermingled (Fig. 2b), suggesting that the batch
effect is minimized.

As a next step, we selected the discriminative genes
that classified different experimental groups accurately
by the proposed method. Only three most significant
genes had 0% OOB (one out of bag) error. Table 1
shows the summarization of these selected genes.

We noted that the OOB error did not increase in

3) A non-hierarchical clustering method which divides the data
set into k groups. k is pre-defined.
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Fig. 1 Boxplots of raw data, after within-slide, and between-slide normalized data. (a) is boxplot of the M-values from 15
experiments. (b) is boxplot of the same arrays after within-slide normalization to equalize the median absolute value for each

array. (C) is boxplot after between-slide normalization.
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Fig. 2. Hierarchical clustering analysis of raw data (a) and standardized data (b). HUVEC1-3: HUVEC in the conventional culture
condition with serum, Matrigel1-3: cultured HUVEC in Matrigel, YCC3_1-3: Co-cultured HUVEC with YCC-3, woSerum1-3: HUVEC
cultured without Serum, M.YCC3_1-3: cultured HUVEC in Matrigel and co-cultured with YCC-3. The numbers behind experiment

labels represent the numbers of replicates in the experiment.

classification even though we increased genes to 200 by
ranking approach4) (Data is not shown). When we
investigated expression patterns of top 100 genes, the

4) One approach for gene selection which select genes sequentially
from a gene that have the least measure

experimental groups and gene groups were clustered
together showing no more batch effects (Fig. 3). By
using new defined metric for gene selection, top 100
genes had similar expression values in the same
experimental group and the clear difference between the
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K.¥YCC3 3

Fig. 3. Cluster analysis of top 100 genes. Five experimental groups were classified accurately with top 100 genes and genes were

clustered into five groups with different expression patterns.

Table 1. Summary of top three discriminative genes selected
by the proposed method

Gene description

AA458634 diaphorase (NADH/NADPH)
(cytochrome b-5 reductase)

T49159 plasminogen activator inhibitor, type Il
(arginine-serpin)

Al524212 ESTs, Weakly similar to ALU7_HUMAN ALU

SUBFAMILY SQ SEQUENCE CONTAMINATION
WARNING ENTRY [H.sapiens]

groups. Even though, the clustering result using whole
gene set was slightly different from the one using top 100
genes, it showed more specific patterns. Therefore we
confirmed that small set of genes might be more
effective to classify different experimental groups.

We analyzed biological interpretations of five gene
clusters by k-means clustering method and explored
expression patterns of each cluster (Table 2). Five
clusters showed the different expression patterns and
were expected that such different expression patterns
have different biological functions.

In addition, we did significance analysis of biological
functions using EASE and used top 1000 genes as
background genes. EASE calculates the degree of
significance, EASE score, of biological function including
selected gene set. Fisher exact test can be used for this
purpose, however, we offered EASE score. We should
put whole gene set as background to calculate EASE
score but used top 1000 genes because of run time error
possibly due to huge data size. Therefore, if we used
whole gene set as background, EASE score might be
decreased than the values shown in Table 3. Top 100
genes were concerned with various biological functions
corresponding to three categories of biological process,
molecular function, and cellular component. We also
investigated the association of expression patterns and

corresponding biological functions for each gene clusters

Biological functions in the first gene cluster were
mainly related to molecular function. All of the biological
functions of the second gene cluster were about
biological processes, which were highly significant. The
third and the fourth gene clusters had not include
significant biological functions but those genes were
relatively significant in cellular component and biological
process respectively. The fifth gene cluster included
genes that had biological functions related to Carboxylic
acid metabolism and Organic acid metabolism. Meanwhile,
we observed some ir-regularities. As in Table 3, the same
gene sets had highly significant two biological functions;
one is Regulation of cell cycle and Mitotic cell cycle in the
second gene cluster and the other is Carboxylic acid
metabolism and Organic acid metabolism in the fifth gene
cluster.

AA458634, T49159, and Al524212, which were
selected as the most significant genes, were clustered
into the first and the fourth gene clusters. While AA458634
was concerned as in highly significant function of
biological process, T49159 was related to the cell death
but not concerned to any significant biological function.
From this, we confirmed that the significant biological
functions are caused by the interactions of genes or gene
sets, not by the several most significant genes.

We selected ssven genes with 0% OOB error from
non-standardized data set. It is relatively larger gene set
comparing to the result from the standardized data set and
any of them were not consistent with three genes selected
from standardized data set (data not shown). From the
functional annotation analysis using DAVID (Database for
Annotation, Visualization and Integrated Discovery, htfp://
apps1.niaid.nih.gov/david/), 72.6% of top 100 genes
selected from the standardized data set included in any
categories of biological functions but 64.9% in the



Table 2. Summary of top five genes for each gene cluster
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Gene cluster Gene ID (ene description

AA458634 diaphorase (NADH/NADPH) (cytochrome b-5 reductase)
T49159 plasminogen activator inhibitor, type If (arginine-serpin)

1 AA283090 CD44 antigen (homing function and Indian blood group system)
N33920 diubiquitin
AA599127 superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
AA278384 cell division cycle 2, G1to S and G2 to M
AA262212 KIAAOOO8 gene product

2 R16712 anillin
AA598610 mesoderm specific transcript (mouse) homolog
AA873060 teukemia-associated phosphoprotein p18 (stathmin)
AA857098 collagen, type V, alpha 2
R36467 transforming growth factor, beta 1

3 AA461456 collagen, type V, alpha 2
N47717 fatty acid binding protein 5 (psoriasis-associated)
AA877213 cytochrome P450, subfamily XXIV (vitamin D 24-hydroxylase)
Al524212 ESTs, Weakly similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION

WARNING ENTRY [H.sapiens]

4 AA481519 potassium voltage-gated channel, shaker-related subfamily, beta member 3
Al347124 hypothetical protein, expressed in ostecblast
AA410188 hypothetical protein, expressed in ostecblast
AA465166 cyclin L ania-6a
AAB94927 asparagine synthetase
AW055062 phospholipase A2, group IVC (cytosolic, calcium-independent)

5 H26184 CCAAT/enhancer binding protein (C/EBP), beta
R41787 cadherin 13, H-cadherin (heart)
AAB64040 tryptophanyl-tRNA synthetase

non-standardized data set did. Also, the result of cluster
analysis of top 100 genes was unbalanced in non-
standardized data set. AImost half of the genes were
clustered into the second gene cluster and only eight and
five genes were clustered into the forth and the fifth gene
clusters, respectively. Gene sets expressed in three
experimental conditions- Matrigel, YCC3, and M.YCC3-
included significant biological functions, while gene sets
expressed in the other experimental conditions did not in
the non-standardized data set (The least EASE scores
were 0.49 and 0.34). Though the significances of
biological functions of the third and the forth gene clusters
in standardized data set were low, five gene clusters had
relatively significant biological functions. This means that
we could select more discriminative genes representing
various expression patterns, which can be interpreted as
various representative biological functions from the
standardized data set.

Most selected discriminative genes from the non-
standardized data were clustered into the same gene
cluster meaning that the selected genes had redundant
expression patterns. On the other hand, the selected
genes from the standardized data included various
expression patterns and the significant biological
functions. It suggests that the problem of redundancy in
gene selection was solved by the standardization.

Before discriminative gene selection, we applied
standardization to expression ratios respectively in each
batch to control batch effect. As a result, we could confirm
that batch effect was minimized using dendrogramd). The
selected discriminative genes in this study were selected
by the expression pattern but not by the magnitude of
expression ratio. However this method can not be
appropriate when different batches include biologically
significant differences because the standardization
transforms the expression values into a relative score of
a gene expression in each batch. Hence, currently we are
on the study about investigating more efficient method
that is useful in such condition.
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Table 3. Summary of biological functions of five gene clusters.

Organic acid metabolism

AA894927, Al015679
AWO055062

Gene cluster* System & category Gene ID EASE score**
(# of genes)
1(19) Molecular function AA283090, Al268937 0.00297
o _ Glycosaminoglycan binding Al889554, R45640
e Biological process AA458634, Al268937 0.00926
| Response to chemical substance Al889554, W46900
2 & 10 14
2(18) Biological process AA278384, AA284072 0.000458
° Regulation of cell cycle AA454094, AA598974
- AAT74665, Al932735
- H59204, R16712
e
4 Biological process AA278384, AA284072 0.000671
a | Mitotic cell cycle AA454004, AA598974
T L AAT774665, Al932735
5 & 10 1s H59204, R16712
3(18) Cellutar component AA857098, H95960 0.0751
o Extracellular matrix R75635
=
it Molecular function AA460152, AA487034 0.0803
7 Protein serine/threonine kinase activity AAB83077
‘f B T 117 ¥ 1 7¥
2 5 10 14
4 (20) Biological process AA464417, AA490996 0.0777
Organismal physiological process AAB862371, AA98B5421
e 4 Al431726, N25945
S Cellular component AA454597, AA464417 0.155
j Integral to membrane AA663439, AAB62371
o s AA985421, N25945
] LR
2 6 10 1a
5 (25) Biological process AA171606, AAG64040 0.0125
Carboxylic acid metabolism AAB94927, Al015679,
24 AW055062
= Biological process AA171606, AAB64040 0.0125

2 6 10 14

* Plots in the first column show the expression patterns of standardized data for each gene cluster.
** Small EASE score means that the corresponding biological function is significant.
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