DOI QR코드

DOI QR Code

SOME EXTENSIONAL PROPERTIES OF MODULES

  • Cho, Yong-Uk (Department of Mathematical Education, College of Education, Silla University)
  • Published : 2006.08.01

Abstract

The purpose of this paper is to describe some characterizations on rational and f-rational extensions of modules, to determine the forms of f-rational extensions of given f-torsion free module for a left exact radical t and investigate the maximal t-rational extensions of modules.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second Edition, Graduate Texts in Mathematics, 13, Springer-Verlag, Berlin, New York, 1992
  2. L. Bican, T. Kepka, and P. Nemec, Rings, Modules and Preradicals, Lecture Notes in Pure and Applied Mathematics, 75, Marcel Dekker, New York and Basel, 1982
  3. G. D. Findlay and J. Lambek, A generalized ring of quotients I. II, Can. Math. Bull. 1 (1958), 77-85, 155-167 https://doi.org/10.4153/CMB-1958-009-3
  4. O. Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10-47 https://doi.org/10.1016/0021-8693(69)90004-0
  5. T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, Hidelberg, Berlin, 1999
  6. J. Lambek, Torsion theories, additive semantics and rings of quotients, Lecture Notes in Math. Vol. 177, Springer-Verlag, New York, Hidelberg, Berlin, 1971
  7. S. Morimoto, On the maximal t-corational extensions of modules, in International Symposium on Ring Theory, Trends Math., Birkhauser, Boston, (2001), 223-230
  8. Bo Stenstrom, Rings of Quotients, Grundl. Math. Wissen. Band 217, Springer-Verlag, New York, Hidelberg, Berlin, 1975
  9. Hans H. Storrer, Rational extensions of modules, Pacific J. Math. 38 (1971), no. 3, 785-794 https://doi.org/10.2140/pjm.1971.38.785
  10. Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), no. 1, 1-18