DOI QR코드

DOI QR Code

압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용

Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests

  • 이종섭 (고려대학교 사회환경시스템공학과) ;
  • 이창호 (고려대학교 사회환경시스템공학과)
  • Lee, Jong-Sub (Dept. of Civil and Environmental Engrg., Korea univ.) ;
  • Lee, Chang-Ho (Dept. of Civil and Environmental Engrg., Korea univ.)
  • 발행 : 2006.08.01

초록

본 논문은 벤더 엘리먼트를 압밀, 토모그래피, 그리고 액상화에 적용하는 방법을 다루었다. 모래와 점토를 이용하여 압밀 시험을 수행하면서 전단파 속도를 측정하여 하중 재하 및 제하 시기를 평가하였다. 전단파 속도는 유효응력의 함수이므로 전단파 속도를 이용하여 하중 재하시기를 결정할 수 있으나, 침하량 기준과 전단파 속도(유효응력) 메카니즘이 다를 수 있으므로 주의해야 한다. 또한 전단파 속도는 고결화 제어 구간(cemented controlled regime)과 응력 제어 구간(stress controlled regime)으로 구별할 수 있어 응력이력현상을 확인할 수 있다. 벤더 엘리먼트가 설치된 고정된 프레임에서 전단파 토모그래피가 가능하다. 낮은 구속응력상태와 진 삼축 장비 내에서 토모그래피 실험을 수행한 결과 전단파 토모그래피는 평균유효응력과 관련된 전단파 속도 변화의 관측에 사용될 수 있음을 보여 주였다. 한편 액상화와 같은 어떤 현상을 관측하기 위하여 반복 주기가 높은 방식의 전단파 트랜스-일루미네이션(trans-illumination)이 적용되었다. 전단파 속도와 크기의 전개는 액상화 동안 과잉간극수압의 경향과 평행함을 알 수 있었다. 본 논문에서 소개한 적용들은 벤더 엘리먼트가 실내 시험에서 전단파 검측에 상당히 효과적인 방법이 될 수 있음을 보여준다.

The scope of this paper covers the applications of bender element tests in consolidation, tomography, and liquefaction. Loading and unloading time during consolidation are evaluated based on shear wave velocity. As S-wave velocity is dependent on effective stress, the loading step may be determined. However, cautions are required due to the different mechanism between the settlement and effective stress criteria. The stress history may be evaluated because the S-wave shows the cement controlled regime and stress controlled regimes. A fixed frame complemented with bender elements permits S-wave tomography The tomography system is tested at low confinement within a true triaxial cell. Results show that shear wave velocity tomography permits monitoring changes in the velocity field which is related to the average effective stress. To monitor the liquefaction phenomenon, S-wave trans-illumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. The evolution of shear wave propagation velocity and attenuation parallel the time-history of excess pore pressure during liquefaction. Applications discussed in this paper show that bender elements can be a very effective tool for the detection of shear waves in the laboratory.

키워드

참고문헌

  1. 박영호 (2001), 1-g 진동대시험을 이용한 액상화 발생후 과잉간 극수압 소산 모델링 및 액상화 대책공법 연구, 박사학위논문, 토목공학과 서울대학교
  2. Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North-Holland
  3. Adalier, K., and Elgamal, A.W. (2002), 'Seismic response of adjacent dense and loose saturated sand columns', Soil Dynamics and Earthquake Engineering, 22, pp.115-127 https://doi.org/10.1016/S0267-7261(01)00059-8
  4. Alarcon-Guzman, A., Leonards, G,A., Chameau, J.L. (1988), 'Undrained monotonic and cyclic strength of sands', Journal of Geotechnical Engineering, ASCE, 114(10), pp,1089-1109 https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1089)
  5. Arulanandan, K., and Scott, R.F. (1993), 'Project VELACS Control test results', Journal of Geotechnical Engineering, ASCE, 119(8), pp.1276-1292 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:8(1276)
  6. Ashford, S.A., Rollins, K.M., Lane, J.D. (2004), 'Blast-induced liquefaction for full-scale foundation testing', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(8), pp,798-806 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(798)
  7. Cascante, G., and Santamarina, J.C. (1996), 'Interparticle contact behavior and wave propagation', Journal of Geotechnical Engineering, ASCE, 122(10), pp,831-839,
  8. Dines, K., and Lytle, J. (1979), 'Computerized Geophysical Tomography', Proceedings of Institute of Electrical and Electronics Engineers, Vol.67, No.8, pp.1065-1073
  9. Fernandez, A., and Santamarina J.C. (2001), 'Effect of cementation of the small-strain parameters of sands', Canadian Geotechnical Journal, Vo1.38, No.1, pp.191-199 https://doi.org/10.1139/cgj-38-1-191
  10. Fiegel, G.L., and Kutter, B.L. (1994), 'Liquefaction mechanism for layered soils', Journal of Geotechnical Engineering, ASCE, 120(4), pp.737-755 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(737)
  11. Florin, V.A., and Ivanov, P.L. (1961), 'Liquefaction of Saturated Sandy Soils', Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 17-22 July 1961, pp.107-111
  12. Graff, K. F. (1975), Wave motion in elastic solids, Dover Publications
  13. Ishihara, K. (1996), Soil behaviour in earthquake geotechnics, OxfordScience Publications, Oxford
  14. Ishihara, K., Huang, Y., and Tsuchiya, H. (1998), 'Liquefaction resistance of nearly saturated sand as correlated with longitudinal wave velocity', Proceedings of the Boit corference on Poromechanics, Poromechanics A Tribute to Maurice A Biot. Belgium. pp.583-586
  15. Ismail, M. A. and Rammah, K. I. (2006), 'A new setup for measuring Go during laboratory compaction', Geotech. Test. J., 29(4), 1-9
  16. Knox, D.P., Stokoe, K.H.II., and Kopperman, S.E. (1982), 'Effect of state of stress on. velocity of low-amplitude shear waves propagating along principal stress directions in dry sand', Geotechnical Engineering Report GR 82-23, University of Texas at Austin
  17. Kokusho, T. (1999), 'Water film in liquefied sand and its effect on lateral spread', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(10), pp.817-826 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:10(817)
  18. Kuwano, R. and Jardine R. J. (2002), 'On the applicability of cross-anisotropic elasticity to granular materials at very small strains', Geotechnique, 52(10), 727-749 https://doi.org/10.1680/geot.52.10.727.38848
  19. Lee, J.S., Fernandez, A.L., and Santamarina, J.C. (2005), 'S-wave velocity tomography: Small-scale laboratory application', Geotechnical Testing Journal, ASTM, 28(4), pp.336-344
  20. Pennington, D. S., Nash, D. F. T., and Lings, M. L. (1997), 'Anisotropy of Go shear stiffuess in Gault Clay', Geotechnique, 47(3), 391-398 https://doi.org/10.1680/geot.1997.47.3.391
  21. Santamarina, J.C., and Reed, A.C. (1994), 'Ray Tomography: Errors and Error Functions', Journal of Applied Geophysics, Vo1.32, pp.347-355 https://doi.org/10.1016/0926-9851(94)90033-7
  22. Santamarina, J.C., Klein, K.A., and Fam, M.A. (2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring, John Wiley and Sons. New York
  23. Schofield, A.N. (1981), 'Dynamic and earthquake geotechnical centrifuge modeling', Recent advances in Geotechnical Earthquake Engineering and Soil Dynamics, Rolla, Missouri, pp.1081-1100
  24. Seed, H.B. (1979), 'Soil liquefaction and cyclic mobility evaluation for level ground during earthquake', Journal of Geotechnical Engineering, ASCE, 105(2), pp.201-255
  25. Seed, H.B., and Lee, K.L. (1966), 'Liquefaction of saturated sands during cyclic loading', Journal of Soil Mechanics and Foundation, ASCE, 92(6), pp.105-134
  26. Tang, H.T. (1987), Large-scale soil structure interaction., Rep. No. NP-5513-SR, Electric Power Research Institute, PaloAlto, California
  27. Witten, A.J., and Long. E. (1986), 'Shallow application of geophysical diffraction tomography', IEEE Transactions on Geoscience and Remote Sensing, Vo1.24, No.5, pp.654-662 https://doi.org/10.1109/TGRS.1986.289611
  28. Yamashita, S. and Suzuki, T. (2001), 'Small strain stiffuess on anisotropic consolidated state of sands by bender elements and cyclic loading tests', Proc. 15th International Conference of Soil Mechanics and Geotechnical Engineering, Istanbul, 325-328
  29. Youd, T.L., and Holzer, T.L. (1994), 'Piezometer performance at Wildlife liquefaction site, California', Journal of Geotechnical Engineering, ASCE, 120(6), pp.975-995 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(975)
  30. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S,S,C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. Stokoe, K.H.II. (2001), 'Liquefaction resistance of soils: Surrunary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soil', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(10), pp.817-833 https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  31. Zeghal, M., Elgamal, A.W., Tang, H.T., and Parra, E. (1995), 'Lotung downhole array II: Evaluation of soil nonlinear properties', Journal of Geotechnical Engineering, ASCE, 121(4), pp.363-378 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(363)
  32. Zeng, X. and Grolewski, B. (2005), 'Measurement of Gmax and estimation of Ko of saturated clay using bender elements in an oedometer', Geotech. Test. J., 28(3), 264-274