DOI QR코드

DOI QR Code

부마찰력이 작용하는 기초판으로 연결된 군말뚝의 거동

The Influence of Negative Skin Friction on Piles in Groups Connected to a Cap

  • 발행 : 2006.08.01

초록

압밀이 진행 중인 지반에 근입된 기초판으로 연결된 말뚝의 거동과 관련된 연구는 기초판으로 연결되지 않은 군말뚝의 거동에 관한 연구에 비하여 매우 부족한 실정이다. 본 논문에서는 일련의 3차원 수치해석을 통해서 압밀이 진행중인 지반에 근입된 군말뚝의 거동에 대한 연구를 수행하였다. 말뚝-지반 경계면에서의 항복(slip)을 고려하지 않은 탄성해석 및 slip을 고려한 탄-소성 해석을 실시하였다. 본 연구 결과, 기초판과 연결된 말뚝의 경우 인장력이 외곽부 말뚝 두부부근에서 발생하는 것으로 나타났고, 탄성이론에 의한 해석 및 slip을 고려하지 않은 해석은 이러한 인장력을 과대평가하는 것으로 해석되었다. 또한 외곽부 말뚝의 인장력 발생은 말뚝의 간격보다는 군말뚝 내의 말뚝개수에 더 큰 영향을 받는 것으로 나타났다. 향후 부마찰의 영향을 받는 말뚝의 설계시 말뚝-기초판 결합부의 파손을 방지하기 위해, 외곽부 말뚝에 작용하는 인장력을 고려해야 할 것으로 분석되었다.

Over the years the investigation of behaviour of piles in groups connected to a cap in consolidating soil has attracted far less attention than the study of isolated piles in groups. In this paper, a series of three-dimensional numerical simulations have been performed to study the behaviour of pile groups connected to a cap in consolidating ground. Both elastic no-slip and elasto-plastic slip analyses were considered. Based on the analysis results, when piles were connected to a cap, tensile forces were developed near the pile head at the outer piles. Elastic solution and no-slip analysis over-predicted the tensile force near the pile head for outer piles. Relatively speaking, the number of piles in a group is more important than the pile spacing in terms of the influence of negative skin friction on the pile behaviour. The issue on the development of tensile forces on the pile head at the outer piles is perhaps needed to be carefully considered in the pile design to prevent the damages of the pile-cap connection.

키워드

참고문헌

  1. ABAQUS User's and Theory Manuals. (1998), Version 5.8, Hibbitt, Karlsson and Sorensen, Inc, Rhode Island
  2. Chellis, R.D. (1961), Pile Foundations, McGraw Hill Book Co
  3. Chow, Y.K., Lim, C.H., & Karunaratne, G.P. (1996), 'Numerical modelling of negative skin friction on pile groups', Computers and Geotechnics, 18(3), 201-224 https://doi.org/10.1016/0266-352X(95)00029-A
  4. Garlanger, J.E., & Lambe, T.W. (1973), Proceedings of a symposium on downdrag on piles, Research Report R-73-56, Soil-331, Department of Civil Engineering, MIT, Cambridge, Massachusetts
  5. Jeong, S., Lee, J. H., & Lee, C. J. (2004), 'Slip effect at the pile-soil interface on dragload', Computer and Geotechnics, 31(2), 115-126 https://doi.org/10.1016/j.compgeo.2004.01.009
  6. Kuwabara, F., & Poulos, H. G. (1989), 'Downdrag forces in group of piles', Journal of Geotechnical Engineering, ASCE, 115(6), 806-818 https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(806)
  7. Lee, C. J., Bolton, M.D., & Al-Tabbaa, A. (2002), 'Numerical modelling of group effects on the distribution of dragloads in pile foundations', Geotechnique, 52(5), 325-335 https://doi.org/10.1680/geot.52.5.325.38704
  8. Lee, C. J., & Ng, C. W. W. (2004), 'Development of downdrag on piles and in pile groups in consolidating soil', Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(9), 905-914 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(905)
  9. Okabe, T. (1977), 'Large negative friction and friction-free pile methods', 9th ICSMFE, 1, 679-682. Tokyo, Japan
  10. Shibata, T., Sekiguchi, H., & Yukitomo, H. (1982), 'Model test and analysis of negative friction acting on piles', Soils and Foundations, 22(2), 29-39 https://doi.org/10.3208/sandf1972.22.2_29
  11. Teh, C.I., & Wong, K.S. (1995), 'Analysis of downdrag on pile groups', Geotechnique, 45(2), 191-207 https://doi.org/10.1680/geot.1995.45.2.191