A Very Low-Bit-Rate Analysis-by-Synthesis Speech Coder Using Zinc Function Excitation

Zinc 함수 여기신호를 이용한 분석-합성 구조의 초 저속 음성 부호화기

  • Published : 2006.08.01

Abstract

This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.

본 논문에서는 1.2 kbps 의 전송률을 가지는 초 저속 음성 부호화기를 위한 방법과 구조를 제안한다. ZFE-CELP (Zinc Function Excitation-Code Excited Linear Prediction) 음성 부호화기는 선형예측 분석 후, 추출된 잔여 신호가 유성음일 경우 Zinc Function을 이용하여 부호화하고, 무성음일 경우에는 CELP 구조를 이용하여 부호화한다. 또한 Super-frame (40ms) 의 영향으로 발생하는 하모닉의 불연속 문제를 해결하기 위해 오버 샘플링을 이용한 선형 위상 합성 기법을 이용하고 Zinc 함수의 정확한 표준파형을 추출하기 위하여 분석-합성 구조를 제안한다. 제안된 초 저속음성 부호화기의 성능을 2.4 kbps의 MELP (Multi Pulse Linear Prediction) 부호화기 및 1.9kbps의 ZFE-PWI (Zinc Function Excitation-Prototype Waveform Interpolation) 음성 부호화기와 비교하였다 제안된 부호화 방법은 19kbps ZFE-PWI 부호화기와 유사한 성능을 보이는 것을 확인하였다.

Keywords

References

  1. R. C. de Lamare, A. Alcaim, 'Strategies to improve the performance of very low bit rate speech coders and application to a variable rate 1.2 kb/s codec', Proc. lEE, 152, 74-86, Feb. 2005
  2. M. Schroeder, B. Atal, 'Code excited linear prediction: Hight quality speech at low bit rates', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 937-940, 1985
  3. A. McCree, K. Truong, E. George, T. Barnwell, and V. Viswanathan. 'A 2.4kbit/s coder candidate for the new U.S. federal standard.' Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 200-203, 1996
  4. D. W. Griffin and J. S. Lim, 'Multiband excitation vocoder', IEEE Trans. Acoustics, Speech and Signal Processing, 36 1223-1235, 1988 https://doi.org/10.1109/29.1651
  5. R. J. McAulay and T. F. Quatieri, 'The application of subband coding to improve quality and robustness of the sinusoidal transform coder', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2 439-442. 1993
  6. W. B. Kleijn and J. Haagen, 'A speech coder based on decomposition of characteristic waveforms', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 508-511, 1995
  7. F. C. A. Brooks, Lajos Hanzo, 'A 1.9kbps Zinc Function Excited, Waveform Interpolated Speech Codec', IEEE Vehicular Technology Conference, 2 18-21, 1998
  8. 김종학, 이인성 'Low Rate Speech Coding Using the Harmonic Coding Combined with CELP Coding', 한국음향학회지. 20 (7), 37-46, 2000
  9. D. J. Hiotakakos and C. S. Xydeas, 'Low bit rate coding using an interpolated Zinc excitation model', in proceedings of the ICCS 94 865-869, 1994
  10. P. Hedelin, 'Phase compensation in all-pole speech analysis', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 339-342, 1998
  11. E. Shlomot, Vladimir Cuperman and A. Gersho, 'Combined Harmonic and Waveform Coding of speech at low Bit Rate', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 585-588, 1998
  12. Masavuki. Nishiguchi and J. Matsumotor, 'Harmonic and Noise Coding of LPC Residuals with Classified Vector Quantization,' Proc. International Conference on Acoustics, Speech and Signal Processing, 484-487, 1995
  13. 언어 자원 은행, http://bola.or.kr
  14. Schmidt-Nielsen, A. Brock, D.P. 'Speaker recognizability testing for voice coders', Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2 7-10 1996