Novel Sulfonated Poly(arylene ether ketone) Containing Benzoxazole Membranes for Proton Exchange Membrane Fuel Cell

  • Li Jin-Huan (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee Chang-Hyun (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Park Ho-Bum (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2006.08.01

Abstract

Novel sulfonated poly(aryl ether ketones) containing benzoxazole were directly synthesized by aromatic nucleophilic polycondensation using various ratios of 2,2'-bi[2-( 4-flurophenyl)benzoxazol-6-yl]hexafluoropropane to sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate). The copolymers were soluble in polar aprotic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide at a relatively high solid composition (>15 wt%) and formed tough, flexible and transparent membranes. The membranes exhibited a degradation temperature of above $290^{\circ}C$. The exact dissolution times of these membranes at $80^{\circ}C$ in Fenton's reagent (3 wt% $H_2O_2$ containing 2 ppm $FeSO_4$) were undetectable, confirming their excellent chemical stability in fuel cell application. The membranes showed a moderate increase in water uptake with respect to increasing temperature. The proton conductivities of the membranes were dependent on the composition and ranged from $1.10{\times}10^{-2}$ to $5.50{\times}10^{-2}Scm^{-1}$ at $80^{\circ}C$ and 95% relative humidity (RH). At $120^{\circ}C$ without externally humidified conditions, the conductivities increased above $10^{-2}Scm^{-1}$ with respect to increasing benzoxazole content, which suggested that the benzoxazole moieties contributed to the proton conduction.

Keywords

References

  1. A. Kerres, J. Membr. Sci., 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  2. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells, 1, 5 (2001) https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  3. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Chem. Mater., 15, 4896 (2003) https://doi.org/10.1021/cm0310519
  4. D. Rivin, C. E. Kendrick, P. W. Gibson, and N. S. Schneider, Polymer, 42, 623 (2001) https://doi.org/10.1016/S0032-3861(00)00350-5
  5. M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  6. C. H. Rhee, H. K. Kim, H. Chang, and J. S. Lee, Chem. Mater., 17, 1691 (2005) https://doi.org/10.1021/cm048058q
  7. C. H. Lee, H. B. Park, Y. M. Lee, and J. Y. Kim, International Conference on Membrane and Membrane Processes, August 21-26, 2005, Seoul, Korea
  8. J. Y. Kim, S. Mulmi, C. H. Lee, H. B. Park, and Y. M. Lee, J. Membr. Sci., (2006) in press, Corrected Proof Available online 22 June 2006, doi : 10. 1016/ j. memsci. 2006.06.024
  9. H. B. Park, C. H. Lee, Y. M. Lee, B. D. Freeman, and H. J. Kim, J. Member. Sci., (2006) submitted for publication
  10. C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and B. D. Freeman, Macromolecules, 39, 755 (2006) https://doi.org/10.1021/ma052226y
  11. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005) https://doi.org/10.1016/j.ssi.2004.07.011
  12. J. W. Rhim, H. S. Hwang, D. S. Kim, H. B. Park, C. H. Lee, Y. M. Lee, G. Y. Moon, and S. Y. Nam, Macromol. Res., 13, 135 (2005) https://doi.org/10.1007/BF03219027
  13. D. S. Kim, H. B. Park, C. H. Lee, Y. M. Lee, G. Y. Moon, S. Y. Nam, H. S. Hwang, T. I. Yun, and J. W. Rhim, Macromol. Res., 13, 314 (2005) https://doi.org/10.1007/BF03218459
  14. C. H. Lee, S. Y. Hwang, C. H. Park, H. B. Park, J. Y. Kim, and Y. M. Lee, Nature Materials (2006) submitted for publication
  15. G. H. Li, C. H. Lee, Y. M. Lee, and G. G. Cho. Solid State Ionics, 177, 1083 (2006) https://doi.org/10.1016/j.ssi.2006.03.003
  16. D. S. Kim, H. B. Park, J. Y. Jang, and Y. M. Lee, J. Polym. Sci.; Part A: Polym. Chem., 43, 5620 (2005) https://doi.org/10.1002/pola.21066
  17. D. S. Kim, K. H. Shin, H. B. Park, and Y. M. Lee, Macromol. Res., 12, 413 (2004) https://doi.org/10.1007/BF03218420
  18. D. J. Jones and J. Roziere, J. Membr. Sci., 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  19. K. D. Kreuer, J. Membr. Sci., 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  20. W. Cui, J. Kerres, and G. Eigenberger, Furif. Technol., 14, 145 (1998)
  21. Y. M. Lee, 'From Precise Macromolecular Synthesis to Macroscopic Materials Properties and Application, Membranes and Fuel Cell, Proton Exchange Membrane for Fuel Cell Systems: Structure-Property Relationships,' in Macromolecular Engineering, Wiley-VCH, 2006
  22. M. J. Summer, W. L, Harrison, R. M. Weyers, Y. S. Kim, J. E. McGrath, J. S. Riffle, A. Brink, and M. H. Brink, J. Membr. Sci., 239, 199 (2004) https://doi.org/10.1016/j.memsci.2004.03.031
  23. R. Bouchet and E. Siebert, Solid State Ionics, 118, 287 (1999) https://doi.org/10.1016/S0167-2738(98)00466-4
  24. X. D. Hu, S. E. Jenkins, B. G. Min, M. B. Polk, and S. Kumar, Macromol. Mater. Eng., 288, 823 (2003) https://doi.org/10.1002/mame.200300013
  25. F. Wang, T. L. Chen, and J. P. Xu, Macromol. Chem. Phys., 199, 1421 (1998)
  26. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, Ind. Eng. Chem. Res., 44, 7617 (2005) https://doi.org/10.1021/ie0501172
  27. S. H. Hsiao and C. H. Yu, Macromol. Chem. Phys., 199, 1247 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980701)199:7<1247::AID-MACP1247>3.0.CO;2-Y
  28. K. H. Park, M. Kakimoto, and Y. Imai, J. Polym. Sci.; Part A: Polym. Chem., 36, 1987 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980915)36:12<1987::AID-POLA3>3.0.CO;2-L
  29. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004) https://doi.org/10.1021/cr020711a
  30. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, and S. Kaliaguine, Macromolecules, 37, 7960 (2004) https://doi.org/10.1021/ma0494941