DOI QR코드

DOI QR Code

A Study on Uncertainty of Risk of Failure Based on Gumbel Distribution

Gumbel 분포형을 이용한 위험도에 관한 불확실성 해석

  • 허준행 (연세대학교 공과대학 사회환경시스템공학부) ;
  • 이동진 (Colorado State University, Dept. of Civil Engrg.) ;
  • 신홍준 (연세대학교 대학원 토목공학과) ;
  • 남우성 (연세대학교 대학원 토목공학과)
  • Published : 2006.08.01

Abstract

The uncertainty of the risk of failure of hydraulic structures can be determined by estimating the variance of the risk of failure based on the methods of moments, probability weighted moments, and maximum likelihood assuming that the underlying model is the Gumbel distribution. In this paper, the variance of the risk of failure was derived. Monte Carlo simulation was peformed to verify the characteristics of the derived formulas for various sample size, design life, nonexceedance probability, and variation coefficient. As the results, PWM showed the smallest relative bias and root mean square error than the others while ML showed the smallest ones for relatively large sample siBes regardless of design life and nonexceedance probability. Also, it was found that variation coefficient does not effect on the relative bias and relative root mean square error.

수공구조물의 위험도에 관한 불확실성을 검토하기 위하여 본 연구에서는 빈도해석을 통하여 추정되는 설계홍수량의 분산량을 고려한 불확실성 해석을 실시하였다. Gumbel 분포형을 기본 분포형으로 가정하였으며, 모멘트법, 최우도법, 확률가중모멘트법을 이용하여 각 매개변수 추정방법별로 추정된 설계홍수량에 대한 이론적인 분산량을 산정하였다. 이론적으로 유도한 분산량의 특성을 규명하기 위하며 다양한 표본크기와 설계연한, 비초과확률 및 변동계수조건에 대하여 Monte-Carlo 모의를 실시하고 각 매개변수 추정방법별 비교를 실시하였다. 그 결과 확률 가중 모멘트법을 사용한 경우 위험도에 대하여 상대적으로 가장 작은 상대편의 및 상대제곱근오차를 발생시키는 것으로 나타났으며, 최우도법의 경우에는 상대적으로 큰 표본자료에 대해서는 설계연한 및 비초과확률에 관계없이 작은 상대편의 및 상대제곱근오차를 발생시키는 것으로 나타났다. 또한 다양한 변동계수 조건은 상대편의 및 상대제곱근오차의 측면에서 고려하여 볼 때 거의 영향을 주지 않는 것으로 나타났다.

Keywords

References

  1. Benjamin, J.R. and Cornell, C.A. (1970). Probability, statistics and decision for civil engineers, McGraw Hill Book Co., N.Y
  2. Chawdhurym J.U. and Stedinger, J.R. (1991). 'Confidence intervals for design floods with estimated skew coefficient.' Journal of Hydraulic Engineering, ASCE, Vol. 117, No. HY1, pp. 811-831 https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(811)
  3. Chow, V.T., Maidment, D.R., and Mays, L.W, (1988). Applied hydrology, McGraw Hill Book, Co., NY
  4. Davis, D., Duckstein, L., Kisiel, C., and Fogel, M (1972). 'Uncertainty in the return period of maximum events: A Bayesian approach.' Proc. Inter. Symp. on Uncertainties in Hydrologic and Water Resources Systems, Tucson, Arizona, pp. 853-862
  5. Kite, G.W. (1988). Frequency and risk analysis in water resources, Water Resources Publications, Littleton, Colorado
  6. Loaiciga, H.A. and Marino, M.A. (1991). 'Recurrences interval of geophysical events.' Journal of Water Resources Planning and Management, ASCE, Vol. 117, No.3, pp. 367-382 https://doi.org/10.1061/(ASCE)0733-9496(1991)117:3(367)
  7. NERC (National Environment Research Council) (1975). Flood studies report, Vol. 1, Hydrological studies, Whiterfriars Press Ltd., London
  8. Phien, H.N, (1987). 'A review of methods for parameter estimation for the extreme value type-1 distribution.' Journal of Hydrology, Vol. 90, pp. 251-268 https://doi.org/10.1016/0022-1694(87)90070-9
  9. Rasmussen, P.F. and Rosbjerg, D. (1989). 'Risk estimation in partial duration series.' Water Resources Research, Vol. 25, No. 11, pp. 2319-2330 https://doi.org/10.1029/WR025i011p02319
  10. Rasmussen, P.F. and Rosbjerg, D. (1991). 'Prediction uncertainty in seasonal partial duration series.' Water Resources Research, Vol. 27, No. 11, pp. 2875-2883 https://doi.org/10.1029/91WR01731
  11. Rosbjerg, D. and Madsen, H. (1992). 'Prediction in partial duration series with generalized Pareto-distributed exceedances.' Water Resources Research, Vol. 28, No. 11, pp. 3001-3010 https://doi.org/10.1029/92WR01750
  12. Stedinger, J. R, Vogel, R.M., and Foufoula-Georgiou, E. (1993). 'Frequency analysis of extreme events.' Handbook of hydrology, Edited by Maidment, D.R., McGraw Hill Book Co., New York
  13. Thompson, K.D. Stedinger, J.R., and Heath, D.R. (1997). 'Evaluation and presentation of dam failure and flood risks.' Journal of Water Resources Planning and Management, ASCE, Vol. 123, No. 4, pp. 216-227 https://doi.org/10.1061/(ASCE)0733-9496(1997)123:4(216)
  14. Vogel, R.M. (1987). 'Reliability indices for water supply systems.' Journal of Water Resources Planning and Management, ASCE, Vol. 113, No. 4, pp. 563-579 https://doi.org/10.1061/(ASCE)0733-9496(1987)113:4(563)
  15. Watt, W.E. and Wilson, K.C. (1978). 'An approach to optimal design of hydraulic structures.' Reliability in water resources management, Edited by McBean, E.A. et al., Water Resources Publications, Littleton, Colorado, pp. 75-90
  16. Yen, B.C. (1970). 'Risks in hydrologic design of engineering projects.' Journal of Hydraulic Engineering, ASCE, Vol. 96, No. HY4, pp. 959-966

Cited by

  1. Comparison of mixed distribution with EV1 and GEV components for analyzing hydrologic data containing outlier vol.73, pp.3, 2015, https://doi.org/10.1007/s12665-014-3490-4
  2. Application of bivariate frequency analysis to the derivation of rainfall–frequency curves vol.24, pp.3, 2010, https://doi.org/10.1007/s00477-009-0328-9