DOI QR코드

DOI QR Code

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness

  • Seo, Mi-Young (Institute of Advanced Ceramics for Semiconductor in BIEMT CO., LTD) ;
  • Kim, Hee-Seung (Institute of Advanced Ceramics for Semiconductor in BIEMT CO., LTD) ;
  • Kim, Ik-Jin (Institute for Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University)
  • 발행 : 2006.08.01

초록

The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.

키워드

참고문헌

  1. E. Doerre and H. Huebner, 'Alumina-Processing, Properties, and Applications,' pp. 216-82, Springer-Verlag, Berlin, 1984
  2. W. A. Kaysser and M. Sprissler, 'Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,' J. Am. Ceram. Soc., 70 [5] 339-43 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb05005.x
  3. C. A. Handwerker, P. A. Morris, and R. L. Coble, 'Effect of Chemical in Homogeneities on Grain Growth and Microstructure in Alumina,' J. Am. Ceram. Soc., 72 [1] 130-36 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb05965.x
  4. J. Roedel and A. M. Glaeser, 'Anisotropy of Grain Growth in Alumina,' J. Am. Ceram. Soc., 73 [11] 3292-301 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06452.x
  5. H. Song and R. L. Coble, 'Origin and Growth Kinetics of Platelike Abnormal Grains in Liquid-Phase-Sintered Alumina,' J. Am. Ceram. Soc., 73 [7] 2077-85 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05271.x
  6. D. H. Riu, Y. M. Kong, and H. E. Kim, 'Effect of $Cr_2O_3$ Addition on Microstructural Evolution and Mechanical Properties of $Al_2O_3$,' J. Eur. Ceram. Soc., 20 [3] 1475-81 (2000) https://doi.org/10.1016/S0955-2219(00)00023-6
  7. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, 'A Critical Evalution of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,' J. Am. Ceram. Soc., 64 [9] 539-43 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  8. A. Harabi and T. J. Davis, 'Mechanical Properties of Sintered Alumina-Chromia Refractoies,' Br. Ceram. Trans. J., 91 71-6 (1992)
  9. H. T. Lim and D. S. Lim, 'Effect of Molding Temperature and Debinding Conditions on Fabrication of Alumina Component by Injection Molding(in Korean),' J. Kor. Ceram. Soc., 32 [5] 559-66 (1995)
  10. R. C. Bradt, '$Cr_2O_3$ Solid Solution Hardening of $Al_2O_3$,' J. Am. Ceram. Soc., 50 [1] 54-5 (1967) https://doi.org/10.1111/j.1151-2916.1967.tb14972.x
  11. R. F. Cook, C. J. Fairbanks, B. R. Lawn, and Y. W. Mai, 'Crack Resistance by Interfacial Bridging : Its Role in Determining Strength Characterization,' J. Mater. Res., 2 [3] 345-56 (1987) https://doi.org/10.1557/JMR.1987.0345