초록
데이타 웨어하우스는 기업이나 사회 전반에서 사용되는 방대한 데이타를 저장하고, 효율적인 분석을 가능하게 하는 데이타 저장소로써, 점점 그 활용도가 증가하고 있다. 본 연구에서는 이러한 데이타 웨어하우스 구축 기술의 핵심이 되는 다차원 데이타 큐브 (multidimensional data cube) 기술을 연구하는 데 목적이 있다. 고차원 데이타 큐브에는 필연적으로 내재하는 데이타의 희소성 (sparsity)에 의한 검색 오버헤드가 있다. 본 연구에서는 이러한 오버헤드를 현격하게 감소시키는 알고리즘을 제시함으로써, 데이타 웨어하우스의 효율을 높이는 데 기여한다. 즉, 고차원의 희소 데이타 큐브에서 데이타가 조밀하게 밀집된 영역들을 찾아 그 영역을 중심으로 서브 큐브를 구축하여, 데이타 검색 시에 전체의 데이타 큐브를 대상으로 하지 않고 해당 서브 큐브만으로 검색 대상을 제한시킴으로써 검색 효율을 높이는 알고리즘이다. 본 논문에서는 다 차원 대용량의 희소 데이타 큐브로부터 밀도가 높은 서브 큐브를 찾기 위하여 비트맵과 히스토그램에 기반한 알고리즘을 제안하며, 실험을 통하여 제안한 알고리즘의 효용성을 보여준다.
A data warehouse is a data repository that enables users to store large volume of data and to analyze it effectively. In this research, we investigate an algorithm to establish a multidimensional data cube which is a powerful analysis tool for the contents of data warehouses and databases. There exists an inevitable retrieval overhead in a multidimensional data cube due to the sparsity of the cube. In this paper, we propose a dense sub-cube extraction algorithm that identifies dense regions from a large sparse data cube and constructs the sub-cubes based on the dense regions found. It reduces the retrieval overhead remarkably by retrieving those small dense sub-cubes instead of scanning a large sparse cube. The algorithm utilizes the bitmap and histogram based techniques to extract dense sub-cubes from the data cube, and its effectiveness is demonstrated via an experiment.