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Abstract

In a strictly two-sided, commutative biquantale, we introduce the notion of (L, ®)-proximity spaces. We investigate
the relations among (L, ®)-proximity spaces, Hutton (L, ®)-uniform spaces, (L, ®) uniform spaces, enriched (L, ®)-

topological spaces and enriched (L, ©)-interior spaces.
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1. Introduction

Recently, Gutiérrez Garcia et al.[2] introduced L-
valued Hutton unifomity where a quadruple (L, <, ®, *)
is defined by a GL-monoid (L, *) dominated by ®, a cl-
quasi-monoid (L, <, ®). Kubiak et al.[14] studied the re-
lationships between the categories of I(L)-uniform spaces
and L-uniform spaces. Kim et al. [9-11] introduced the
notion of Hutton (L, ®)-uniformities, (L, ®)-uniformities,
enriched (L, ®)-topologies and enriched {L,®)-interior
spaces.

In this paper, we introduce the notion of (L,®)-
proximity spaces. We investigate the relations among
(L, ®)-proximity spaces, Hutton (L, ®)-uniform spaces,
(L, ®) uniform spaces, enriched (L, ®)-topological spaces
and enriched (L, ®)-interior spaces.

2. Preliminaries

Definition 2.1. [4-7, 12,16] A triple (L,<,Q) is
called a strictly two-sided, commutative biquantale (stsc-
biquantale, for short) iff it satisfies the following proper-
ties:

LD L = (L,<,V,A, T,1) is a completely distribu-
tive lattice where T is the universal upper bound and L
denotes the universal lower bound;

(L2) (L, ®) is a commutative semigroup;

(L3)a=a@® T,foreacha € L;

(L4) © is distributive over arbitrary joins, i.e.

icl i€l
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(L5) @ is distributive over arbitrary meets, i.e.

il i€l
A mapping n : L — L is called a strong negation , de-
noted by n(a) = a*, if it satisfies the following conditions:
(N1)n{n(a)) = aforeacha € L.
(N2) If a < bforeach a,b € L, then n(a) > n(b).
In this paper, we assume that (L, <, ®, ®,* ) is a stac-
biquantale with a strong negation * which is defined by

r®y=(z" Oy

Lemma 2.2, [12] Let (L, <, ®, ®,* ) be a biquantale with
a strong negation * which is defined by

16y = (" Oy
For each z,y,2 € L, {y; | ¢ € T} C L, we have the
following properties.

MIfy <z (z0y) < (z0=2).

QIfy<z (zdy) < (z®2).

BIfzo0y<zAy.

@DHo0r=1L1"=0andzVy<zdy.

) Niervi = (ViEF Yi)*

(6) VieF yi = (/\z’er Yi)*.

Nz (/\ieF Yi) = /\iel‘(x D Yi).

All algebraic operations on L can be extended point-
wisely to the set LX as follows: forallz € X, A\, u € LX
anda € L,

(D) A < piff Mz) < p(z);

@) (Ao p)(x) = Az) © p(z);

P 1lx(z)=T, a®lx(z)=candly(z)= 1;

@) (@ = N(z) = o — Az) and (A — a)(z) =
Az) - a;

5) (@O N)(z) = a0 Ax).



Definition 2.3. [9-11] Let Q(X) be a subset of (L*)(~™)
such that
(O1) XA < ¢(N), for each X € L,
(02) ¢(Vier As) = Vier #(Ni), for {A; }zeF C LX,
(03) a2 ® ¢(\) = p(a ® \), foreach A € L

For ¢, ¢1, ¢=2, ¢35 € U X), we define, for all A € X,
= Alpe L o(p") <X,
P10 d2(N) = 1(d2(N)),

¢1® 62 (N) = A\{$1(M) © 62(A2) | A= M @ Ao}

Definition 2.4. [9-11] A nonempty subset U of Q(X) is
called a Hutton (L, ®)-uniformity on X if it satisfies the
following conditions:
(U Ifp < ¢ withgp € Uandyy € Q(X
(U2) Foreach ¢, € U, ¢ @y € U.
(U3) For each ¢ € U, there exists ¢y € U such that
Yo < 6.
(U4) For each ¢ € U, there exists ¢! € U.
The pair (X,U) is said to be a Hutton (L,®)-uniform
space. \

Definition 2.5. [9: 1] Let BE(X x X) = {u € L**X |
u(z,z) = T} bea ‘subset of LX*X. A nonempty subset

D of E(X x X) is called an (L, ®)-uniformity on X if it
satisfies the following conditions:

DODIfu <vwithuw € Dandv € E(X x X), then
v € D.

(D2) Foreach u,v € D,u®uv € D.

(D3) For each u € D, there exists v € D such that
vov < u where

), theny € U.

\ (v(,2) © v(z,9))-

ze€X

vou(a,y) =

(D4) For each © € D, there exists u* € U where
u®(z,y) = uly, ).
The pair (X, D) is said to be an (L, ®)-uniform space.
Theorem 2.6. [9-11] We define two mappings I" : E(X x
X) - Q(X)and A : Q(X) — E(X x X) as follows:

\/ Az) O u(z,y).
z€X
A(@)(x,y) = (1) (¥)-

Then for u, u1,us € E(X x X) and ¢, ¢1, p2 € Q(X),
we have the following properties:

(D) T(u @ UQ) < T(u1) @ T(ua).

@) D(u)™! = T(u).

(3) F(u1 o U,Q) F('U,Q) (o] I‘(ul)

@ T (a0u)=a0l(u).

A(p1 ® ¢2).

(6) A(¢)" = A(¢™).

(7) A(¢1) o A(d2) = A(¢2 0 ¢1).
B) Aa® @) = a© Ag).

T(u)(M)(y

(5) AE¢1) O A(ps) =
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Theorem 2.7. [9-11] Let D be an (L; ®}-uniform space.
We define a subset Up of Q(X) as follows:

Up = {¢ € UX) | Fu e D,T(u) < ¢}.
Then Up is a Hutton (L, ®)- uniformity on X.

Theorem 2.8. [9-11] Let U be a Hutton (L, ®)-uniformity
on X . We define a subset Dy of E(X x X)) as follows:

Dy={ue€ E(X x X) |34 € U,A(¢) <u}.

Then:
(1) Dy is an (L, ®)-uniformity on X.
(2) DUD =D and UDU =U.

Definition 2.9. [10] A subset T of L* is called an (L, ®)-
topology on X if it satisfies the following conditions:

(T1)1x,1g € T.

(T2) If )\1, A €T, then A\ ® X €T.

(T3)If Ay, A2 € T, then Ay A Xy € T,

(T4 If X; € Tforalli € T, then\/, . A €T
The pair (X, T) is called an (L, ®)-topological space.

An (L, ®)-topological space is called enriched iff it sat-
isfies:

E)IfAeT, thena e T.

Definition 2.10. [10] A functionI : LX — L~ iscalled an
(L, ®)-interior operator on X iff I satisfies the following
conditions:

AN I(1x) = 1x.

1) I(\) < A

MIAO ) >IN o L(u).

A4 IA A p) = I(A) AL(p).

The pair (X, I) is called an (L, ®)-interior space.

An (L, ®)-interior space (X, I) is called topological if

(M II(N)) > I(N), VA e LX.

An (L, ®)-interior space (X, 1) is called enriched if

ELao N > a0 l()), YVae L e LX.

An (L, ®)-interior space (X, I) is called principle if

P I(/\iEI‘ >\z) = /\iEF I(/\i), Viel,\ € LX.

Theorem 2.11. [10] (1) Let (X, T) be an enriched (L, ®)-
topological space. Define a map It : L* — L% as fol-
lows:

Ir(\) =\/{pe L* |p< A peT}
Then It is an enriched topological (L,
on X induced by T.

(2) Let (X,I) be an enriched topological (L,®)-
interior space. Define a subset Tt of L¥ by

®)-interior operator

Ti={A e L* | A <IN}
Then Ty is an enriched (L, ®)-topology on X induced by

I
3)Ir, =Iand Ty, = T.
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Theorem 2.12. [10] Let U be a Hutton (L, ®)-uniformity
on X. We define a mapping Iy : LX — LX as follows:

() =\/{pe L* |36 €U, ¢(p) <A}

Then:

(1) Iy is an enriched topological (L, ®)-interior oper-
ator on X.

(2) T1y, is an enriched (L, ©®)-topology induced by U.

Theorem 2.13. [10] Let D be an (L, ©®)-uniformity on X.
We define a mapping Ip : LX — L¥ as follows:

In(\) = \/{p € L* | 3u € D,T(w)(p) < A}.

Then:
(1) Ip is an enriched topological (L, ®)-interior opet-
ator on X.

@)
In(A) = \/{a @1y | ueD,aou(y,—) <A}

(3) T, is an enriched (L, ®)-topology induced by D.
Moreover, Iy, = Ip.

(4) If U is a Hutton (L, ®)-uniformity on X, then
Ip, =1u.

3. Proximities and two types uniformities

Definition 3.1. A subset § of LX x LX is called an (L, ®)-
proximity on X if it satisfies the following conditions:

®1) (L, 19) & 6.

P2)If (N, p) & dand p < A, then (u, p) & 4.

(P If (N, p;) € dfori=1,2,then (A, py V p2) €3.

P If (N, p) & 6, then X < p*.

(P5) If (A, p;) € dfori = 1,2, then (A © A2, 01 &
p2) € 9.

(P6) If (\,p) & 6, there exists v € LX such that
(A7) € 6and (v*,p) € 6.

PN If (N p) €4, then (p,A) €6

The pair (X, §) is said to be an (L, ®)-proximity space.

An (L, ©)-proximity space is called enriched if it sat-
isfies

EYIf(N\,p)¢gdanda € L, then (a © A\, a* @ p) € 9.

An (L, ®)-proximity space is called principle if it sat-
isfies

(PYIf (A;,p) ¢ dforall j € J, then (V;c; Aj,p) € 6.

Theorem 3.2. Let (X, ) be an (resp. principle, enriched)
(L, ®)- proximity space. Define a function I5 : LX — L¥
by

I,(\) = \{peL* | (p,X") & 5}.

Then (X,1;) is a (resp. principle, enriched) topological
(L, ®)-interior space.
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Proof. (1) (I1) Since (1x,1p) € 4, I5(1x) = 1x.

(I2) Since (p, A*) ¢ &, by (P4), p < A. Thus, I5(A\) <
A

(I3) From (L4) and (P5), we have:

Ls(A1) © Is(A2)
—{Vim e X | (0, X)) € 8}
o{ Vpz € L¥ | (p2,33) # 8} }
=V{p1 @ p2 € L* | (p1,A]) € 8, (p2,\3) & 0}

<V{p1 ©p2 € L* | (p1 ® p2, X} @ A3) € 6}
<Is(AL © A2).

(14) Since (p1,A7) & 8,(p2,A5) & ¢ implies (p; A
P2, ATV A3) € 4 from (P2) and (P3), by (L1), we have

LIs(A1) ALs(A2)
= { Vo € I¥ | (o1, 2) ¢ 6}
AM{Vie € LX | (02,25) £ 61}
=\V{p1 Ap2 € LY | (p1,A]) € 6, (02, A3) & 6}

< Vip1 Ap2 € LX | (p1 A p2, ATV A3) ¢ 0}
< Is(A1 A A2).

(T) Let (p, \*) & 6 be given. Then there exists y € L~
such that (p,v) € 0 and (v*,\*) € & So, Is(A) > ~*.
Thus, (p,7v) € 6 and Is(A\)* < v implies (p,Is(A)*) & 6.
Now, (p, A*) & & implies (p,I5(A\)*) & &. Hence

I(A) <V{peL*|(p,\*) ¢}
<V{p e L | (p,I5(N)*) € 6}

= I5(Ls(N)).
(E) If § i enriched, by (L4),

aOL(Y) =a0{V{peL¥|(pX) ¢}
<V{eope LX | (a@p,a* ®X*) €6}

<Is(a®N).

(P) If (X, §) is principle, we will show that I; (A ;) =
ALs ().

Suppose Is(A,cr Ai) Z Aier Is(As). By a completely
distributive lattice L and the definition of Is();), there
exists p; with (p;,A}) ¢ & for each ¢ € T such that
Ls(Aier M) 2 Nier pi-

On the other hand, since (p;, A}) ¢ ¢ foreachi € T
and (X, ¢) is principle, (A, pis Vier Af) € 4. So,
Is(Ajer M) = Ajerpi- It is a contradiction. Hence
Li(AX) > ALs(X\). By (I4), since A < p implies
Ls(A) < Ls(w), Is(A Xi) < ALs(N).

O



Example 3.3. Let X be a set. Define two subsets §; of
LX x LX as follows:

(A, p) €61 iff A =1gor p=1g,

(A p) €8s iff A < p*.

(1) Let (A1 ®Ag, 1B us2) € 1. Since Ay Oz # 1gand
p1@puz # lpimply Ay # 1g, A2 # 1g p1 # 1p or ps # 1y,
we have (A1, 1) € 81 or (Ao, p2) € ;. We easily show
61 is a principal (L, ®)-proximity on X . For each o # T
witha © A # lg,sincea* P lp) €6 > a* O lx # 1
from Lemma 2.2(4), § is not enriched because

(A 1g) €61, (a@\a" ®1g) €.

(2) Since A1 < p5 and Az < pf implies A} © Ay <
(p1 @ p2)*, we have (A1 © Ag,p1 @ p2) & da. Since
(M A*) € 82 and (A, p) € b, o satisfies (PS) and (P6).
Other cases are easy. Hence d2 is a principal enriched
(L, ®)-proximity on X

(3) We can obtain Is,, Is, : LX — L¥ as follows:

1y, ifa=1y,
I, () = { 1y, otherwise,

I,(A\) =\, VAe L~

Sincea®ly £ 15, (a@lx)=1gfora g {T,L1},1Is is
not enriched. But I, is enriched because

LA =a0A=a0L;(N).

(4) We can obtain (L, ®)-topologies Ty, , T1,, as fol-
lows:
Ty, = {1x, 10}, T152 =L

Theorem 3.4. Let U be a Hutton (L, ®)-uniformity on X.
We define

Then &y is an enriched (L, ®)-proximity on X such
that I, = Iy.

Proof. (1) (P1) Since ¢(1x) = lx, we have (1x,1p) ¢
dy. (P2) and (P4) are obvious.

(P3) Since (A, p;) € du iff 34, € U,4:i(N) < pf
for i = 1,2, there exists ¢y ® ¢ € U such that, by
P R o < ¢ fori =1,2,

$1 ® ¢2(A) < d1(A) A d2(N) < pi A p5.
So, ()\,pl \ pg) ¢ du.
(P5) Since (\;, p;) € oy iff 3o, € U, ¢;(N;) < pf for
i = 1,2, there exists ¢1 ® ¢» € U such that
$1 ® P2(A1 © A2) < ¢1 (M) © P2(N2) < pT © p5.

So, (M © A2, 01 @ p2) ¢ du.
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(P6) Since (A, p) & Sy iff Jp € U, ¢(\) < p*, there
exists ¢ € U with ¢ o ¥ < ¢ such that

PA) SY(A), Yo(A) <o(A) <p"

So, there exists ¢»(A)* such that

(A 9(N)") € du, (¥(A),p) € du.

®7) (A p) & Sy iff 3¢ € U,$(N) < p* iff 37" €
U, 671 (p) < X iff (p, A) & du.

(E) Let (A\,p) & du. Then 3¢ € U,¢(A) < p*. Tt
implies

Ha®N) = a0 () <adp = (" ®p)"

Thus, (@ ©® A\, a* @ p) € dy. Hence by is an enriched
(L, ®)-proximity on X.
By the definition of 6y, Is, = Iu.
O

Theorem 3.5. Let D be an (L, ®)-uniformity on X. We
define

(A, p) € 6p iff FJu € D, T(u)(N) < p*.

Then dp is an enriched (L, ®)-proximity on X such
that I5D =Ip.

Proof. (1) (P1)Since T(u)(1x) < 1x,wehave Ip(1x) =
1x. (P2) is obvious.

(P3) Since (A, p;) € op iff Ju; € D, T(w)(N) < pf
for i = 1,2, there exists I'(u;) ® I'(uz) € Up such that,
by Theorems 2.6-7,

Iu ©u2)(A) < (Tur) @ T(ug)) ()

<
< TD(u)(A) A T(uz) (V) < pi A 3.

SO, (A, 71 \% pg) ¢ 5])

(P4) Since p < T(u){p) < A Ip(A) < A for all
Ae LX,

(PS) Since (\;, p;) & 0p iff Ju; € D, T'(w;)(N\) < pf
for i = 1, 2, there exists u; ® ug € D such that

F(ul ® 'U,Q)()\l ® )\2) < (F(U1) [ F(’UQ))(/\l ® )\2)
< T(u) (A1) ©@T(u1)(A2)
< p1 © ps.

SO, ()\1 O] )\2,,01 &2} p2) Q 5D~

(P6) Since (A, p) € op iff Fu € D, I(u)(A) < p*,
there exists v € D with v o v < u such that, by Theorem
2.6(3), T(v)(\) < T'(v)(A) and

[(v) o T(v)(A) = Do v)(A) < T(W)(A) < p*.
So, there exists I'(v)(\)* such that
(A, T(0)(N)") € dp, (T(v)(A),p) & dp-

(P7) Let (A\,p) & Op. Then there exists u €
D,T(u)(A\) < p*. So, T(u)~(p) < A*. By Theorem
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2.6(2), for u € D, there exists u® € D with I'(u)™! =
I'(v®) such that I'(uw®)(p) < A*. Hence (p, A) € dp.

E) Let (A, p) ¢ ép. Then Ju € D, T'(u)(N) < p*. By
Theorem 2.6(4), we have

Fw(aeN)=a0T ()N <a®p" ={(a"®p)".
Thus, (& ® A\, o* @ p) € dp.
By the definition of dp, Is, = Ip.
O

Example 3.6. Let X = {z,y, 2} be aset and ([0,1],®) a
biquantale defined by ¢ © y = max{0,z + y — 1} (ref.[4-
6,14]). Define ¢ € Q(X) as follows:

¢(Lizy) = d(1(yy) = Liayy, 0(112)) = Lz

Then U = {y € Q(X) | ¢ < 2} is a Hutton (L, ®)-
uniformity on X ( Example in reference [9]). We obtain
an enriched (L, ®) proximity on X as follows, for each
a€ L,

ASaOlyyy, pa’ @l
ASa®@ley, pLa” Ol
ASa@l{z}a pSa*EB]—{rL,y}v
)\Sa@].{m,y}a pSO!*@l{Z},

()‘79) g 6U iff

For each A € LX, by Is,, = Iy of Theorem 3.4,

Lu(M)(2) = Tu(N)(y) = M)A M), Tu(M)(z) = A(2)-

We obtain
Ty, = TIsU

={a0lx, e LY | Az) =Ay) =a,\(y) = b,
Va,b,o € L}.
We obtain an (L, ®)-uniformity Dy
= {u € E(X x X) | A(¢) < u}. Foreach A € L¥, by
Theorems 2.13 and 3.5,
(Lsp, =Iny)(N) =

where & = A(z) A A(y),
I, = IéDU-

(a@ l{z})-\/ (Ol@l{y}) V(,B@ ]-{z})‘

8 = Az). Hence Ip, = Iy =

Theorem 3.7. Let § be a principle, enriched (L,®)-
proximity on X. We define cs : LX — L* as follows:

= N\peLX|(p*",\).¢0}.

Then:

(1) (Cl) 65(1@) = 1@.

€)X < c5(N).

(C3) cs(A @ ) < cs(A) @ es{p).

(C4) cs(cs(N)) = es(N), VA e L*.

(CS cs(a®N) =a®es(N), Va e L e LX.
(€6) c5(Vjes A) = Vjes cs(Ag)-
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(2) ¢s € Q(X) such that cgl = cs.

(3) es(A*) = (Is(X))* forall A € LX.

(4) c;s has a right adjoint mapping I satisfying cs(A) <
p iff X < Is(w), for each A\, € L¥. Furthermore,
A < Ises(A)) and cs(Is(p)) < p

Proof. (C1) and (C2) are obvious.
(C3) Suppose there exist A\;, Ao € L¥ such that

cs(A @ A2) £ cs(A1) B es(A2)

By the definition of ¢s and Lemma 2.2(7), there exist
pi € LX with (p*, \;) € 6 fori = 1,2 such that

cs(AM @A) £ 1 @ p2

Since (pf, \;) & dfori = 1,2, (p; ©® p3, A1 B X2) & 6.
Then cs(A; @ A2) < p1 @ po. Itis a contradiction. Hence
¢s holds (C3).

(C4) Suppose there exists A\ € L~ such that
es(cs(A)) £ cs(A). By the definition of ¢s()), there ex-
ist p € LX with (p*,\) & & such that cs(cs(\)) £ p. On
the other hand, since (p*, A) & J, there exists v € L with
(p*,7) & 6 and (v*,A) & 4. Tt implies cs(v) < p and
cs(A) < v. Hence cs(cs(N)) < cs(y) < p. Itis a con-
tradiction. Hence ¢s5 o ¢5 < ¢5. By the definition of cs,
C50Cs > Cs.

(C5)

a®cs(A) =a0A{pe L |(p,\) ¢4}
=Naop|(a"@p",a0A) ¢d}
=cs(a O ).

(C6) Suppose cs(V ;e s Aj) £ Vjeycs(A;). Since L

isa completely distributive lattice, for each 7 € J, there
exists p; € LX with (P}, Aj) & & such that

sV A £\ s

jeJ jeJ
Since ¢ is principle, (p},)\;) € & implies
(/\jeJ p;f7\/]€,] ) € 6. Hence 06(\/ cq M) < \/je] Pj-
It isacontradlctlon Hence cs(V ¢ )\j) Vjercs(Aj)
Since A < g implies cs(A) < cs(p ) we have

es(Vjes Ai) 2 Viescs(Ag).
() By (1), c; € QX). Let (p*,A) & 6. Then
(N, p*) & 6 implies c5(p*) < A*. Thus,

= N\pe X | es(p*) < X'}
< MNpe L¥ [ (00 €8} = cs(N).

Let cs(u*) < A*. Since cs(u*) = A{pi € L* |
(pi,p*) & 6}, by @), (Vpj,pu*) & 4. Since A <
(cs(w™))* = Vpi, we bave (\/p;,u*) & & implies

(A, u*) € 6. So, (u*,\) ¢ 6. Hence ¢; ' > cs.



(3) For all A € LX, by Lemma 2.2(5),

() = MpeLX | (" A g5t
= (Vo e LX | (7, x) ¢ 6})
= L)

(4) Since ¢; is a join-preserving map from (C6), ithasa
right adjoint c5~(X) = \/{p € L¥ | c5(p) < A}. We only
show that ¢~ = 1.

Suppose there exists A € L such that ¢5~(A) £ Is()).
By the definition of cj~, there exists p € L* with ¢s(p) =
A{i | (pf,p) & 0} < Xsuch that p £ Is5(A). Since §
is principle, {c5(p)*, p) &€ 9. Since cs(A)* > A*, by (P2),
(X, p) & 8. So, I5(\) > p. Itis a contradiction. Hence
c; <Is.

Suppose there exists A € L such that c5~ () 2 Is(}).
By the definition of I, there exists p € L~ with (p, \*) €
& such that ¢5(A) 2 p. Since (p, \*) € 6, cs(p) < A. So,
¢5 (M) > p. It is a contradiction. Hence ¢~ > Is.

Let ¢s(A) < p. By the definition of ¢~ = Is,
A< Ts(p).
Let A < Ts(u) = Vipi € I¥ | es(pi) < p}. Since
A <V pi, we have ¢s(A) < cs(V pi) = Ves(pi) < p
Furthermore, cs(A) < cs(A) iff A < Ls(cs(A)). A
Ls(p) < L5 (pa) iff e5(Ts(p)) < .
O

Theorem 3.8. Let 6 be a principle, enriched (L, A)-
proximity on X. We define a subset Us of Q(X) as fol-
lows:

Us={d€QX) lcs <o}

Then (1) Us is an Hutton (L, AA)-uniformity induced
by § where

102 (A
) 6y, =6

= A{81(0) Ada(A2) | A= A A do}.

Proof. First, we show that csAcs = cs.

Suppose there exists csAcs{A) Z cs(A). Then there
exist A1, Az € LX with A\ = Ay A Ao such that c5(A() A
cs(A2) # cs(N). By the definition of c¢s, there exist
p;i € LX with (pi,N\;) &€ & for i = 1,2 such that
o1 A p2 # cs(A). On the other hand, since (p], ;) € 6 for
i=1,2, (pFVp5, A AX) € 3. So, p1 Apz > cs(N). Ttisa
contradiction. Hence csA\cs > cs. Since csAcs(AN1x) <
es(A) A es(lx) = cs(A), we have cs Acs < cs.

(U1) Obvious. (U2) Let ¢, € U for ¢ = 1,2. Then
cs < ¢;. Since cs = csDes < ¢1A¢z, p1A¢y € Us

(U3) For ¢ € Ujs with ¢5 < ¢, there exists ¢s € Us
such that cs o ¢5 = ¢5 < ¢.

(U4) For ¢ € U; with ¢5 < ¢, since cgl

1< ¢~ implies ¢~ € Uy,

(2) Let (A, p) ¢ du,. Then there exists ¢ € Us such
that ¢(A) < p*. Since ¢ € Uj, there exists ¢; < ¢

= c[s’

Proximities and two types uniformities

such that ¢s(\) < &(A) < p*.
(07, A) € 6} < p*
Hence (p, A) € 6.

Let (p,\) ¢ 4. Then ¢5(A) < p*. Since ¢; € Us,
()\,,0) ¢ 6U5'

Since ¢s(A) = A{p: |
Lthen p <V p; and (V pf,)) & 5.

O

From Theorems 2.6, 2.8 and 3.8, we can obtain the fol-
lowing corollary.

Corollary 3.9. Let § be a principle, enriched (L, A)-
proximity on X. We define a subset Ds of £(X x X)
as follows:

D;s = {u c E(X X X) ] A(C5) < 'U,}.

Then Ds is an (L, A)-uniformity such that ip, = 4.
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