Proximities and two types uniformities

Yong Chan Kim¹ and Young Sun Kim²

¹ Department of Mathematics, Kangnung National University, Gangneung, 210-702, Korea ² Department of Applied Mathematics, Pai Chai University, Daejeon, 302-735, Korea

Abstract

In a strictly two-sided, commutative biquantale, we introduce the notion of (L, \odot) -proximity spaces. We investigate the relations among (L, \odot) -proximity spaces, Hutton (L, \otimes) -uniform spaces, (L, \odot) uniform spaces, enriched (L, \odot) topological spaces and enriched (L, \odot) -interior spaces.

Key words:

 (L, \odot) -proximity spaces. Hutton (L, \otimes) -uniform spaces, (L, \odot) -uniform spaces, enriched (L, \odot) -topological spaces, enriched (L, \odot) -interior spaces

1. Introduction

Recently, Gutiérrez García et al.[2] introduced Lvalued Hutton uniformity where a quadruple $(L, \leq, \otimes, *)$ is defined by a GL-monoid (L,*) dominated by \otimes , a clquasi-monoid (L, \leq, \otimes) . Kubiak et al.[14] studied the relationships between the categories of I(L)-uniform spaces and L-uniform spaces. Kim et al. [9-11] introduced the notion of Hutton (L, \otimes) -uniformities, (L, \odot) -uniformities, enriched (L, \odot) -topologies and enriched (L, \odot) -interior spaces.

In this paper, we introduce the notion of (L, \odot) proximity spaces. We investigate the relations among (L, \odot) -proximity spaces, Hutton (L, \otimes) -uniform spaces, (L, \odot) uniform spaces, enriched (L, \odot) -topological spaces and enriched (L, \odot) -interior spaces.

2. Preliminaries

Definition 2.1. [4-7, 12,16] A triple $(L, <, \odot)$ is called a strictly two-sided, commutative biquantale (stscbiquantale, for short) iff it satisfies the following properties:

(L1) $L = (L, \leq, \vee, \wedge, \top, \bot)$ is a completely distributive lattice where \top is the universal upper bound and \bot denotes the universal lower bound;

- (L2) (L, \odot) is a commutative semigroup;
- (L3) $a = a \odot \top$, for each $a \in L$;
- (L4) ⊙ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

접수일자: 2006년 3월 19일 완료일자: 2006년 8월 9일 (L5) ⊙ is distributive over arbitrary meets, i.e.

$$(\bigwedge_{i\in\Gamma}a_i)\odot b=\bigwedge_{i\in\Gamma}(a_i\odot b).$$

A mapping $n: L \to L$ is called a strong negation, denoted by $n(a) = a^*$, if it satisfies the following conditions:

(N1)
$$n(n(a)) = a$$
 for each $a \in L$.

(N2) If
$$a \le b$$
 for each $a, b \in L$, then $n(a) \ge n(b)$.

In this paper, we assume that $(L, \leq, \odot, \oplus, *)$ is a stacbiquantale with a strong negation * which is defined by

$$x \oplus y = (x^* \odot y^*)^*$$
.

Lemma 2.2. [12] Let $(L, \leq, \odot, \oplus, *)$ be a biquantale with a strong negation * which is defined by

$$x \oplus y = (x^* \odot y^*)^*.$$

For each $x, y, z \in L$, $\{y_i \mid i \in \Gamma\} \subset L$, we have the following properties.

- (1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$.
- (2) If $y \le z$, $(x \oplus y) \le (x \oplus z)$.
- (3) If $x \odot y \leq x \wedge y$.
- (4) $0^* = 1$, $1^* = 0$ and $x \lor y \le x \oplus y$.

- $(5) \bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*.$ $(6) \bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*.$ $(7) x \oplus (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \oplus y_i).$

All algebraic operations on L can be extended pointwisely to the set L^X as follows: for all $x \in X$, $\lambda, \mu \in L^X$ and $\alpha \in L$,

- (1) $\lambda \leq \mu$ iff $\lambda(x) \leq \mu(x)$;
- (2) $(\lambda \odot \mu)(x) = \lambda(x) \odot \mu(x)$;
- (3) $1_X(x) = \top$, $\alpha \odot 1_X(x) = \alpha$ and $1_{\emptyset}(x) = \bot$;
- (4) $(\alpha \rightarrow \lambda)(x) = \alpha \rightarrow \lambda(x)$ and $(\lambda \rightarrow \alpha)(x) =$ $\lambda(x) \to \alpha$;
 - $(5) (\alpha \odot \lambda)(x) = \alpha \odot \lambda(x).$

Definition 2.3. [9-11] Let $\Omega(X)$ be a subset of $(L^X)^{(L^X)}$ such that

(O1) $\lambda \leq \phi(\lambda)$, for each $\lambda \in L^X$,

 $\begin{array}{l} \text{(O2)}\ \phi(\bigvee_{i\in\Gamma}\lambda_i)=\bigvee_{i\in\Gamma}\phi(\lambda_i)\text{, for }\{\lambda_i\}_{i\in\Gamma}\subset L^X,\\ \text{(O3)}\ \alpha\odot\phi(\lambda)=\phi(\alpha\odot\lambda)\text{, for each }\lambda\in L^X. \end{array}$

(O3)
$$\alpha \odot \phi(\lambda) = \phi(\alpha \odot \lambda)$$
, for each $\lambda \in L^X$.

For $\phi, \phi_1, \phi_2, \phi_3 \in \Omega(X)$, we define, for all $\lambda \in L^X$,

$$\phi^{-1}(\lambda) = \bigwedge \{ \rho \in L^X \mid \phi(\rho^*) \le \lambda^* \},$$

$$\phi_1 \circ \phi_2(\lambda) = \phi_1(\phi_2(\lambda)),$$

$$\phi_1 \otimes \phi_2(\lambda) = \bigwedge \{ \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}.$$

Definition 2.4. [9-11] A nonempty subset U of $\Omega(X)$ is called a Hutton (L, \otimes) -uniformity on X if it satisfies the following conditions:

- (U1) If $\phi \leq \psi$ with $\phi \in \mathbf{U}$ and $\psi \in \Omega(X)$, then $\psi \in \mathbf{U}$.
- (U2) For each $\phi, \psi \in \mathbf{U}, \phi \otimes \psi \in \mathbf{U}$.
- (U3) For each $\phi \in \mathbf{U}$, there exists $\psi \in \mathbf{U}$ such that $\psi \circ \psi \leq \phi$.
 - (U4) For each $\phi \in \mathbf{U}$, there exists $\phi^{-1} \in \mathbf{U}$.

The pair (X, \mathbf{U}) is said to be a Hutton (L, \otimes) -uniform space.

Definition 2.5. [9-11] Let $E(X \times X) = \{u \in L^{X \times X} \mid$ $u(x,x) = \top$ be a subset of $L^{X\times X}$. A nonempty subset **D** of $E(X \times X)$ is called an (L, \odot) -uniformity on X if it satisfies the following conditions:

- (D1) If $u \leq v$ with $u \in \mathbf{D}$ and $v \in E(X \times X)$, then $v \in \mathbf{D}$.
 - (D2) For each $u, v \in \mathbf{D}$, $u \odot v \in \mathbf{D}$.
- (D3) For each $u \in \mathbf{D}$, there exists $v \in \mathbf{D}$ such that $v \circ v \leq u$ where

$$v \circ v(x,y) = \bigvee_{z \in X} (v(x,z) \odot v(z,y)).$$

(D4) For each $u \in \mathbf{D}$, there exists $u^s \in \mathbf{U}$ where $u^s(x,y) = u(y,x).$

The pair (X, \mathbf{D}) is said to be an (L, \odot) -uniform space.

Theorem 2.6. [9-11] We define two mappings $\Gamma : E(X \times Y)$ $(X) \to \Omega(X)$ and $\Lambda: \Omega(X) \to E(X \times X)$ as follows:

$$\Gamma(u)(\lambda)(y) = \bigvee_{x \in X} \lambda(x) \odot u(x, y).$$

$$\Lambda(\phi)(x,y) = \phi(1_{\{x\}})(y).$$

Then for $u, u_1, u_2 \in E(X \times X)$ and $\phi, \phi_1, \phi_2 \in \Omega(X)$, we have the following properties:

- (1) $\Gamma(u_1 \odot u_2) \leq \Gamma(u_1) \otimes \Gamma(u_2)$.
- $(2) \Gamma(u)^{-1} = \Gamma(u^s).$
- (3) $\Gamma(u_1 \circ u_2) = \Gamma(u_2) \circ \Gamma(u_1)$.
- (4) $\Gamma(\alpha \odot u) = \alpha \odot \Gamma(u)$.
- (5) $\Lambda(\phi_1) \odot \Lambda(\phi_2) = \Lambda(\phi_1 \otimes \phi_2)$.
- (6) $\Lambda(\phi)^s = \Lambda(\phi^{-1}).$
- (7) $\Lambda(\phi_1) \circ \Lambda(\phi_2) = \Lambda(\phi_2 \circ \phi_1).$
- (8) $\Lambda(\alpha \odot \phi) = \alpha \odot \Lambda(\phi)$.

Theorem 2.7. [9-11] Let **D** be an (L, \odot) -uniform space. We define a subset U_D of $\Omega(X)$ as follows:

$$\mathbf{U}_{\mathbf{D}} = \{ \phi \in \Omega(X) \mid \exists u \in \mathbf{D}, \Gamma(u) \le \phi \}.$$

Then U_D is a Hutton (L, \otimes) - uniformity on X.

Theorem 2.8. [9-11] Let U be a Hutton (L, \otimes) -uniformity on X. We define a subset $\mathbf{D}_{\mathbf{U}}$ of $E(X \times X)$ as follows:

$$\mathbf{D}_{\mathbf{U}} = \{ u \in E(X \times X) \mid \exists \phi \in \mathbf{U}, \Lambda(\phi) \le u \}.$$

Then:

- (1) $\mathbf{D}_{\mathbf{U}}$ is an (L, \odot) -uniformity on X.
- (2) $\mathbf{D}_{\mathbf{U}_{\mathbf{D}}} = \mathbf{D}$ and $\mathbf{U}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{U}$.

Definition 2.9. [10] A subset **T** of L^X is called an (L, \odot) topology on X if it satisfies the following conditions:

- (T1) $1_X, 1_\emptyset \in \mathbf{T}$.
- (T2) If $\lambda_1, \lambda_2 \in \mathbf{T}$, then $\lambda_1 \odot \lambda_2 \in \mathbf{T}$.
- (T3) If $\lambda_1, \lambda_2 \in \mathbf{T}$, then $\lambda_1 \wedge \lambda_2 \in \mathbf{T}$.
- (T4) If $\lambda_i \in \mathbf{T}$ for all $i \in \Gamma$, then $\bigvee_{i \in \Gamma} \lambda_i \in \mathbf{T}$

The pair (X, \mathbf{T}) is called an (L, \odot) -topological space.

An (L, \odot) -topological space is called *enriched* iff it satisfies:

(E) If $\lambda \in \mathbf{T}$, then $\alpha \odot \lambda \in \mathbf{T}$.

Definition 2.10. [10] A function $I: L^X \to L^X$ is called an (L, \odot) -interior operator on X iff I satisfies the following conditions:

- (I1) $\mathbf{I}(1_X) = 1_X$.
- (I2) $\mathbf{I}(\lambda) \leq \lambda$.
- (I3) $\mathbf{I}(\lambda \odot \mu) \geq \mathbf{I}(\lambda) \odot \mathbf{I}(\mu)$.
- (I4) $\mathbf{I}(\lambda \wedge \mu) = \mathbf{I}(\lambda) \wedge \mathbf{I}(\mu)$.

The pair (X, \mathbf{I}) is called an (L, \odot) -interior space.

An (L, \odot) -interior space (X, \mathbf{I}) is called *topological* if (T) $\mathbf{I}(\mathbf{I}(\lambda)) \geq \mathbf{I}(\lambda), \ \forall \lambda \in L^X$.

An (L, \odot) -interior space (X, \mathbf{I}) is called *enriched* if

(E) $\mathbf{I}(\alpha \odot \lambda) \geq \alpha \odot \mathbf{I}(\lambda), \ \forall \alpha \in L, \lambda \in L^X$.

An (L, \odot) -interior space (X, \mathbf{I}) is called *principle* if

(P) $\mathbf{I}(\bigwedge_{i \in \Gamma} \lambda_i) = \bigwedge_{i \in \Gamma} \mathbf{I}(\lambda_i), \ \forall i \in \Gamma, \lambda_i \in L^X$.

Theorem 2.11. [10] (1) Let (X, \mathbf{T}) be an enriched (L, \odot) topological space. Define a map $\mathbf{I_T}:L^X \to L^X$ as follows:

$$\mathbf{I}_{\mathbf{T}}(\lambda) = \bigvee \{ \rho \in L^X \mid \rho \le \lambda, \ \rho \in \mathbf{T} \}.$$

Then I_T is an enriched topological (L, \odot) -interior operator on X induced by \mathbf{T} .

(2) Let (X, \mathbf{I}) be an enriched topological (L, \odot) interior space. Define a subset T_I of L^X by

$$\mathbf{T}_{\mathbf{I}} = \{ \lambda \in L^X \mid \lambda \leq \mathbf{I}(\lambda) \}.$$

Then T_I is an enriched (L, \odot) -topology on X induced by

(3)
$$\mathbf{I}_{\mathbf{T}_{\mathbf{I}}} = \mathbf{I}$$
 and $\mathbf{T}_{\mathbf{I}_{\mathbf{T}}} = \mathbf{T}$.

Theorem 2.12. [10] Let **U** be a Hutton (L, \otimes) -uniformity on X. We define a mapping $\mathbf{I}_{\mathbf{U}}: L^X \to L^X$ as follows:

$$\mathbf{I}_{\mathbf{U}}(\lambda) = \bigvee \{ \rho \in L^X \mid \exists \phi \in \mathbf{U}, \phi(\rho) \le \lambda \}.$$

Then:

- (1) $\mathbf{I}_{\mathbf{U}}$ is an enriched topological (L,\odot) -interior operator on X.
 - (2) $\mathbf{T}_{\mathbf{I}_{\mathbf{U}}}$ is an enriched (L,\odot) -topology induced by $\mathbf{U}.$

Theorem 2.13. [10] Let **D** be an (L, \odot) -uniformity on X. We define a mapping $\mathbf{I}_{\mathbf{D}}: L^X \to L^X$ as follows:

$$\mathbf{I}_{\mathbf{D}}(\lambda) = \bigvee \{ \rho \in L^X \mid \exists u \in \mathbf{D}, \Gamma(u)(\rho) \le \lambda \}.$$

Then

(1) $\mathbf{I}_{\mathbf{D}}$ is an enriched topological (L,\odot) -interior operator on X.

(2)

$$\mathbf{I}_{\mathbf{D}}(\lambda) = \bigvee \{\alpha \odot 1_{\{y\}} \mid \exists u \in \mathbf{D}, \alpha \odot u(y, -) \leq \lambda \}.$$

- (3) $\mathbf{T_{I_D}}$ is an enriched (L,\odot) -topology induced by \mathbf{D} . Moreover, $\mathbf{I_{U_D}} = \mathbf{I_D}$.
- (4) If U is a Hutton (L, \otimes) -uniformity on X, then $\mathbf{I}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{I}_{\mathbf{U}}$.

3. Proximities and two types uniformities

Definition 3.1. A subset δ of $L^X \times L^X$ is called an (L, \odot) -proximity on X if it satisfies the following conditions:

(P1) $(1_X, 1_\emptyset) \notin \delta$.

(P2) If $(\lambda, \rho) \notin \delta$ and $\mu \leq \lambda$, then $(\mu, \rho) \notin \delta$.

(P3) If $(\lambda, \rho_i) \notin \delta$ for i = 1, 2, then $(\lambda, \rho_1 \vee \rho_2) \notin \delta$.

(P4) If $(\lambda, \rho) \notin \delta$, then $\lambda \leq \rho^*$.

(P5) If $(\lambda_i, \rho_i) \notin \delta$ for i = 1, 2, then $(\lambda_1 \odot \lambda_2, \rho_1 \oplus \rho_2) \notin \delta$.

(P6) If $(\lambda, \rho) \notin \delta$, there exists $\gamma \in L^X$ such that $(\lambda, \gamma) \notin \delta$ and $(\gamma^*, \rho) \notin \delta$.

(P7) If $(\lambda, \rho) \in \delta$, then $(\rho, \lambda) \in \delta$

The pair (X, δ) is said to be an (L, \odot) -proximity space. An (L, \odot) -proximity space is called *enriched* if it satisfies

(E) If $(\lambda, \rho) \not\in \delta$ and $\alpha \in L$, then $(\alpha \odot \lambda, \alpha^* \oplus \rho) \not\in \delta$. An (L, \odot) -proximity space is called *principle* if it satisfies

(P) If $(\lambda_j, \rho) \notin \delta$ for all $j \in J$, then $(\bigvee_{j \in J} \lambda_j, \rho) \notin \delta$.

Theorem 3.2. Let (X, δ) be an (resp. principle, enriched) (L, \odot) - proximity space. Define a function $\mathbf{I}_{\delta}: L^X \to L^X$ by

$$\mathbf{I}_{\delta}(\lambda) = \bigvee \{ \rho \in L^X \mid (\rho, \lambda^*) \notin \delta \}.$$

Then (X, \mathbf{I}_{δ}) is a (resp. principle, enriched) topological (L, \odot) -interior space.

Proof. (1) (I1) Since $(1_X, 1_\emptyset) \not\in \delta$, $\mathbf{I}_{\delta}(1_X) = 1_X$.

(I2) Since $(\rho, \lambda^*) \notin \delta$, by (P4), $\rho \leq \lambda$. Thus, $\mathbf{I}_{\delta}(\lambda) \leq \lambda$.

(I3) From (L4) and (P5), we have:

$$\begin{split} &\mathbf{I}_{\delta}(\lambda_{1})\odot\mathbf{I}_{\delta}(\lambda_{2})\\ &=\left\{\bigvee\{\rho_{1}\in L^{X}\mid (\rho_{1},\lambda_{1}^{*})\not\in\delta\}\right\}\\ &\odot\left\{\bigvee\{\rho_{2}\in L^{X}\mid (\rho_{2},\lambda_{2}^{*})\not\in\delta\}\right\}\\ &=\bigvee\{\rho_{1}\odot\rho_{2}\in L^{X}\mid (\rho_{1},\lambda_{1}^{*})\not\in\delta, (\rho_{2},\lambda_{2}^{*})\not\in\delta\}\\ &\leq\bigvee\{\rho_{1}\odot\rho_{2}\in L^{X}\mid (\rho_{1}\odot\rho_{2},\lambda_{1}^{*}\oplus\lambda_{2}^{*})\not\in\delta\}\\ &\leq\mathbf{I}_{\delta}(\lambda_{1}\odot\lambda_{2}). \end{split}$$

(I4) Since $(\rho_1, \lambda_1^*) \notin \delta$, $(\rho_2, \lambda_2^*) \notin \delta$ implies $(\rho_1 \land \rho_2, \lambda_1^* \lor \lambda_2^*) \notin \delta$ from (P2) and (P3), by (L1), we have

$$\begin{split} &\mathbf{I}_{\delta}(\lambda_{1}) \wedge \mathbf{I}_{\delta}(\lambda_{2}) \\ &= \left\{ \bigvee \{ \rho_{1} \in L^{X} \mid (\rho_{1}, \lambda_{1}^{*}) \notin \delta \} \right\} \\ &\wedge \left\{ \bigvee \{ \rho_{2} \in L^{X} \mid (\rho_{2}, \lambda_{2}^{*}) \notin \delta \} \right\} \\ &= \bigvee \{ \rho_{1} \wedge \rho_{2} \in L^{X} \mid (\rho_{1}, \lambda_{1}^{*}) \notin \delta, (\rho_{2}, \lambda_{2}^{*}) \notin \delta \} \\ &\leq \bigvee \{ \rho_{1} \wedge \rho_{2} \in L^{X} \mid (\rho_{1} \wedge \rho_{2}, \lambda_{1}^{*} \vee \lambda_{2}^{*}) \notin \delta \} \\ &\leq \mathbf{I}_{\delta}(\lambda_{1} \wedge \lambda_{2}). \end{split}$$

(T) Let $(\rho, \lambda^*) \not\in \delta$ be given. Then there exists $\gamma \in L^X$ such that $(\rho, \gamma) \not\in \delta$ and $(\gamma^*, \lambda^*) \not\in \delta$ So, $\mathbf{I}_{\delta}(\lambda) \geq \gamma^*$. Thus, $(\rho, \gamma) \not\in \delta$ and $\mathbf{I}_{\delta}(\lambda)^* \leq \gamma$ implies $(\rho, \mathbf{I}_{\delta}(\lambda)^*) \not\in \delta$. Now, $(\rho, \lambda^*) \not\in \delta$ implies $(\rho, \mathbf{I}_{\delta}(\lambda)^*) \not\in \delta$. Hence

$$\begin{aligned} \mathbf{I}_{\delta}(\lambda) & \leq \bigvee \{ \rho \in L^{X} \mid (\rho, \lambda^{*}) \notin \delta \} \\ & \leq \bigvee \{ \rho \in L^{X} \mid (\rho, \mathbf{I}_{\delta}(\lambda)^{*}) \notin \delta \} \\ & = \mathbf{I}_{\delta}(\mathbf{I}_{\delta}(\lambda)). \end{aligned}$$

(E) If δ is enriched, by (L4),

$$\alpha \odot \mathbf{I}_{\delta}(\lambda) = \alpha \odot \left\{ \bigvee \{ \rho \in L^{X} \mid (\rho, \lambda^{*}) \notin \delta \} \right\}$$

$$\leq \bigvee \{ \alpha \odot \rho \in L^{X} \mid (\alpha \odot \rho, \alpha^{*} \oplus \lambda^{*}) \notin \delta \}$$

$$\leq \mathbf{I}_{\delta}(\alpha \odot \lambda).$$

(P) If (X, δ) is principle, we will show that $\mathbf{I}_{\delta}(\bigwedge \lambda_i) = \bigwedge \mathbf{I}_{\delta}(\lambda_i)$.

Suppose $\mathbf{I}_{\delta}(\bigwedge_{i\in\Gamma}\lambda_i)\not\geq \bigwedge_{i\in\Gamma}\mathbf{I}_{\delta}(\lambda_i)$. By a completely distributive lattice L and the definition of $\mathbf{I}_{\delta}(\lambda_i)$, there exists ρ_i with $(\rho_i,\lambda_i^*)\not\in\delta$ for each $i\in\Gamma$ such that $\mathbf{I}_{\delta}(\bigwedge_{i\in\Gamma}\lambda_i)\not\geq \bigwedge_{i\in\Gamma}\rho_i$.

On the other hand, since $(\rho_i, \lambda_i^*) \not\in \delta$ for each $i \in \Gamma$ and (X, δ) is principle, $(\bigwedge_{i \in \Gamma} \rho_i, \bigvee_{i \in \Gamma} \lambda_i^*) \not\in \delta$. So, $\mathbf{I}_{\delta}(\bigwedge_{i \in \Gamma} \lambda_i) \geq \bigwedge_{i \in \Gamma} \rho_i$. It is a contradiction. Hence $\mathbf{I}_{\delta}(\bigwedge \lambda_i) \geq \bigwedge \mathbf{I}_{\delta}(\lambda_i)$. By (I4), since $\lambda \leq \mu$ implies $\mathbf{I}_{\delta}(\lambda) \leq \mathbf{I}_{\delta}(\mu)$, $\mathbf{I}_{\delta}(\bigwedge \lambda_i) \leq \bigwedge \mathbf{I}_{\delta}(\lambda_i)$.

514

Example 3.3. Let X be a set. Define two subsets δ_i of $L^X \times L^X$ as follows:

$$(\lambda, \rho) \not\in \delta_1 \text{ iff } \lambda = 1_{\emptyset} \text{ or } \rho = 1_{\emptyset},$$

$$(\lambda, \rho) \not\in \delta_2 \text{ iff } \lambda \leq \rho^*.$$

(1) Let $(\lambda_1 \odot \lambda_2, \mu_1 \oplus \mu_2) \in \delta_1$. Since $\lambda_1 \odot \lambda_2 \neq 1_\emptyset$ and $\mu_1 \oplus \mu_2 \neq 1_\emptyset$ imply $\lambda_1 \neq 1_\emptyset$, $\lambda_2 \neq 1_\emptyset$ $\mu_1 \neq 1_\emptyset$ or $\mu_2 \neq 1_\emptyset$, we have $(\lambda_1, \mu_1) \in \delta_1$ or $(\lambda_2, \mu_2) \in \delta_1$. We easily show δ_1 is a principal (L, \odot) -proximity on X. For each $\alpha \neq \top$ with $\alpha \odot \lambda \neq 1_\emptyset$, since $\alpha^* \oplus 1_\emptyset$) $\notin \delta_1 \geq \alpha^* \odot 1_X \neq 1_\emptyset$ from Lemma 2.2(4), δ is not enriched because

$$(\lambda, 1_{\emptyset}) \notin \delta_1, \ (\alpha \odot \lambda, \alpha^* \oplus 1_{\emptyset}) \in \delta_1.$$

- (2) Since $\lambda_1 \leq \rho_2^*$ and $\lambda_2 \leq \rho_2^*$ implies $\lambda_1 \odot \lambda_2 \leq (\rho_1 \oplus \rho_2)^*$, we have $(\lambda_1 \odot \lambda_2, \rho_1 \oplus \rho_2) \not\in \delta_2$. Since $(\lambda, \lambda^*) \not\in \delta_2$ and $(\lambda, \rho) \not\in \delta_2$, δ_2 satisfies (P5) and (P6). Other cases are easy. Hence δ_2 is a principal enriched (L, \odot) -proximity on X
 - (3) We can obtain $\mathbf{I}_{\delta_1}, \mathbf{I}_{\delta_2} : L^X \to L^X$ as follows:

$$\mathbf{I}_{\delta_1}(\lambda) = \left\{ egin{array}{ll} 1_X, & ext{if } \lambda = 1_X, \\ 1_{\emptyset}, & ext{otherwise,} \end{array}
ight.$$

$$\mathbf{I}_{\delta_2}(\lambda) = \lambda, \ \forall \lambda \in L^X.$$

Since $\alpha \odot 1_X \not\leq \mathbf{I}_{\delta_1}(\alpha \odot 1_X) = 1_{\emptyset}$ for $\alpha \not\in \{\top, \bot\}$, \mathbf{I}_{δ_1} is not enriched. But \mathbf{I}_{δ_2} is enriched because

$$\mathbf{I}_{\delta_2}(\alpha \odot \lambda) = \alpha \odot \lambda = \alpha \odot \mathbf{I}_{\delta_2}(\lambda).$$

(4) We can obtain (L,\odot) -topologies $\mathbf{T}_{\mathbf{I}_{\delta_1}}$, $\mathbf{T}_{\mathbf{I}_{\delta_2}}$ as follows:

$$\mathbf{T}_{\mathbf{I}_{\delta_1}} = \{1_X, 1_{\emptyset}\}, \quad \mathbf{T}_{\mathbf{I}_{\delta_2}} = L^X$$

Theorem 3.4. Let ${\bf U}$ be a Hutton (L,\otimes) -uniformity on X. We define

$$(\lambda, \rho) \not\in \delta_{\mathbf{U}} \text{ iff } \exists \phi \in \mathbf{U}, \ \phi(\lambda) \leq \rho^*.$$

Then $\delta_{\mathbf{U}}$ is an enriched (L,\odot) -proximity on X such that $\mathbf{I}_{\delta_{\mathbf{U}}}=\mathbf{I}_{\mathbf{U}}.$

Proof. (1) (P1) Since $\phi(1_X) = 1_X$, we have $(1_X, 1_\emptyset) \notin \delta_{\mathbf{U}}$. (P2) and (P4) are obvious.

(P3) Since $(\lambda, \rho_i) \notin \delta_{\mathbf{U}}$ iff $\exists \phi_i \in \mathbf{U}, \phi_i(\lambda) \leq \rho_i^*$ for i = 1, 2, there exists $\phi_1 \otimes \phi_2 \in \mathbf{U}$ such that, by $\phi_1 \otimes \phi_2 \leq \phi_i$ for i = 1, 2,

$$\phi_1 \otimes \phi_2(\lambda) \leq \phi_1(\lambda) \wedge \phi_2(\lambda) \leq \rho_1^* \wedge \rho_2^*$$
.

So, $(\lambda, \rho_1 \vee \rho_2) \notin \delta_{\mathbf{U}}$.

(P5) Since $(\lambda_i, \rho_i) \notin \delta_{\mathbf{U}}$ iff $\exists \phi_i \in \mathbf{U}, \phi_i(\lambda_i) \leq \rho_i^*$ for i = 1, 2, there exists $\phi_1 \otimes \phi_2 \in \mathbf{U}$ such that

$$\phi_1 \otimes \phi_2(\lambda_1 \odot \lambda_2) \leq \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \leq \rho_1^* \odot \rho_2^*$$
.

So, $(\lambda_1 \odot \lambda_2, \rho_1 \oplus \rho_2) \notin \delta_{\mathbf{U}}$.

(P6) Since $(\lambda, \rho) \notin \delta_{\mathbf{U}}$ iff $\exists \phi \in \mathbf{U}, \phi(\lambda) \leq \rho^*$, there exists $\psi \in \mathbf{U}$ with $\psi \circ \psi \leq \phi$ such that

$$\psi(\lambda) \le \psi(\lambda), \ \psi \circ \psi(\lambda) \le \phi(\lambda) < \rho^*.$$

So, there exists $\psi(\lambda)^*$ such that

$$(\lambda, \psi(\lambda)^*) \not\in \delta_{\mathbf{U}}, \ (\psi(\lambda), \rho) \not\in \delta_{\mathbf{U}}.$$

(P7) $(\lambda, \rho) \notin \delta_{\mathbf{U}} \text{ iff } \exists \phi \in \mathbf{U}, \phi(\lambda) \leq \rho^* \text{ iff } \exists \phi^{-1} \in \mathbf{U}, \phi^{-1}(\rho) \leq \lambda^* \text{ iff } (\rho, \lambda) \notin \delta_{\mathbf{U}}.$

(E) Let $(\lambda, \rho) \notin \delta_{\mathbf{U}}$. Then $\exists \phi \in \mathbf{U}, \phi(\lambda) \leq \rho^*$. It implies

$$\phi(\alpha \odot \lambda) = \alpha \odot \phi(\lambda) \le \alpha \odot \rho^* = (\alpha^* \oplus \rho)^*.$$

Thus, $(\alpha \odot \lambda, \alpha^* \oplus \rho) \not\in \delta_{\mathbf{U}}$. Hence $\delta_{\mathbf{U}}$ is an enriched (L, \odot) -proximity on X.

By the definition of $\delta_{\mathbf{U}}$, $\mathbf{I}_{\delta_{\mathbf{U}}} = \mathbf{I}_{\mathbf{U}}$.

Theorem 3.5. Let **D** be an (L, \odot) -uniformity on X. We define

$$(\lambda, \rho) \not\in \delta_{\mathbf{D}} \text{ iff } \exists u \in \mathbf{D}, \Gamma(u)(\lambda) \leq \rho^*.$$

Then $\delta_{\mathbf{D}}$ is an enriched (L, \odot) -proximity on X such that $\mathbf{I}_{\delta_{\mathbf{D}}} = \mathbf{I}_{\mathbf{D}}$.

Proof. (1) (P1) Since $\Gamma(u)(1_X) \leq 1_X$, we have $\mathbf{I}_{\mathbf{D}}(1_X) = 1_X$. (P2) is obvious.

(P3) Since $(\lambda, \rho_i) \notin \delta_{\mathbf{D}}$ iff $\exists u_i \in \mathbf{D}, \Gamma(u_i)(\lambda) \leq \rho_i^*$ for i = 1, 2, there exists $\Gamma(u_1) \otimes \Gamma(u_2) \in \mathbf{U}_{\mathbf{D}}$ such that, by Theorems 2.6-7,

$$\Gamma(u_1 \odot u_2)(\lambda) \leq (\Gamma(u_1) \otimes \Gamma(u_2))(\lambda)$$

$$\leq \Gamma(u_1)(\lambda) \wedge \Gamma(u_2)(\lambda) \leq \rho_1^* \wedge \rho_2^*.$$

So, $(\lambda, \rho_1 \vee \rho_2) \notin \delta_{\mathbf{D}}$.

(P4) Since $\rho \leq \Gamma(u)(\rho) \leq \lambda$, $\mathbf{I_D}(\lambda) \leq \lambda$ for all $\lambda \in L^X$.

(P5) Since $(\lambda_i, \rho_i) \notin \delta_{\mathbf{D}}$ iff $\exists u_i \in \mathbf{D}, \Gamma(u_i)(\lambda_i) \leq \rho_i^*$ for i = 1, 2, there exists $u_1 \odot u_2 \in \mathbf{D}$ such that

$$\Gamma(u_1 \odot u_2)(\lambda_1 \odot \lambda_2) \leq (\Gamma(u_1) \otimes \Gamma(u_2))(\lambda_1 \odot \lambda_2)
\leq \Gamma(u_1)(\lambda_1) \odot \Gamma(u_1)(\lambda_2)
\leq \rho_1^* \odot \rho_2^*.$$

So, $(\lambda_1 \odot \lambda_2, \rho_1 \oplus \rho_2) \not\in \delta_{\mathbf{D}}$.

(P6) Since $(\lambda, \rho) \notin \delta_{\mathbf{D}}$ iff $\exists u \in \mathbf{D}, \Gamma(u)(\lambda) \leq \rho^*$, there exists $v \in \mathbf{D}$ with $v \circ v \leq u$ such that, by Theorem 2.6(3), $\Gamma(v)(\lambda) \leq \Gamma(v)(\lambda)$ and

$$\Gamma(v) \circ \Gamma(v)(\lambda) = \Gamma(v \circ v)(\lambda) \le \Gamma(u)(\lambda) \le \rho^*.$$

So, there exists $\Gamma(v)(\lambda)^*$ such that

$$(\lambda, \Gamma(v)(\lambda)^*) \notin \delta_{\mathbf{D}}, \ (\Gamma(v)(\lambda), \rho) \notin \delta_{\mathbf{D}}.$$

(P7) Let $(\lambda, \rho) \notin \delta_{\mathbf{D}}$. Then there exists $u \in \mathbf{D}, \Gamma(u)(\lambda) \leq \rho^*$. So, $\Gamma(u)^{-1}(\rho) \leq \lambda^*$. By Theorem

2.6(2), for $u \in \mathbf{D}$, there exists $u^s \in \mathbf{D}$ with $\Gamma(u)^{-1} =$ $\Gamma(u^s)$ such that $\Gamma(u^s)(\rho) \leq \lambda^*$. Hence $(\rho, \lambda) \notin \delta_{\mathbf{D}}$.

(£) Let $(\lambda, \rho) \notin \delta_{\mathbf{D}}$. Then $\exists u \in \mathbf{D}, \Gamma(u)(\lambda) \leq \rho^*$. By Theorem 2.6(4), we have

$$\Gamma(u)(\alpha \odot \lambda) = \alpha \odot \Gamma(u)(\lambda) \le \alpha \odot \rho^* = (\alpha^* \oplus \rho)^*.$$

Thus, $(\alpha \odot \lambda, \alpha^* \oplus \rho) \notin \delta_{\mathbf{D}}$.

By the definition of $\delta_{\mathbf{D}}$, $\mathbf{I}_{\delta_{\mathbf{D}}} = \mathbf{I}_{\mathbf{D}}$.

Example 3.6. Let $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ a biquantale defined by $x \odot y = \max\{0, x + y - 1\}$ (ref.[4-6,14]). Define $\phi \in \Omega(X)$ as follows:

$$\phi(1_{\{x\}}) = \phi(1_{\{y\}}) = 1_{\{x,y\}}, \ \phi(1_{\{z\}}) = 1_{\{z\}}$$

Then $\mathbf{U} = \{ \psi \in \Omega(X) \mid \phi \leq \psi \}$ is a Hutton (L, \otimes) uniformity on X (Example in reference [9]). We obtain an enriched (L, \odot) proximity on X as follows, for each

$$(\lambda,\rho)\not\in\delta_{\mathbf{U}} \ \ \mathrm{iff} \left\{ \begin{array}{l} \lambda\leq\alpha\odot1_{\{x,y\}},\ \rho\leq\alpha^*\oplus1_{\{z\}}\ ,\\ \lambda\leq\alpha\oplus1_{\{z\}},\ \rho\leq\alpha^*\odot1_{\{x,y\}}\ ,\\ \lambda\leq\alpha\odot1_{\{z\}},\ \rho\leq\alpha^*\oplus1_{\{x,y\}}\ ,\\ \lambda\leq\alpha\oplus1_{\{x,y\}},\ \rho\leq\alpha^*\odot1_{\{z\}}\ , \end{array} \right.$$

For each $\lambda \in L^X$, by $\mathbf{I}_{\delta_{\mathbf{U}}} = \mathbf{I}_{\mathbf{U}}$ of Theorem 3.4,

$$\mathbf{I}_{\mathbf{U}}(\lambda)(x) = \mathbf{I}_{\mathbf{U}}(\lambda)(y) = \lambda(x) \wedge \lambda(y), \ \mathbf{I}_{\mathbf{U}}(\lambda)(z) = \lambda(z).$$

We obtain

$$\begin{split} \mathbf{T_{I_{U}}} &= \mathbf{T_{I_{\delta_{U}}}} \\ &= \{\alpha \odot 1_{X}, \lambda \in L^{X} \mid \lambda(x) = \lambda(y) = a, \lambda(y) = b, \\ \forall a, b, \alpha \in L\}. \end{split}$$

We obtain an (L, \odot) -uniformity $\mathbf{D}_{\mathbf{U}}$ $=\{u\in E(X\times X)\mid \Lambda(\phi)\leq u\}.$ For each $\lambda\in L^X$, by Theorems 2.13 and 3.5,

$$(\mathbf{I}_{\delta_{\mathbf{D}_{\mathbf{U}}}} = \mathbf{I}_{\mathbf{D}_{\mathbf{U}}})(\lambda) = (\alpha \odot 1_{\{x\}}) \dot{\vee} (\alpha \odot 1_{\{y\}}) \vee (\beta \odot 1_{\{z\}}).$$

where $\alpha = \lambda(x) \wedge \lambda(y)$, $\beta = \lambda(z)$. Hence $\mathbf{I}_{\mathbf{D}_{\mathbf{U}}} = \mathbf{I}_{\mathbf{U}} =$ $\mathbf{I}_{\delta_{\mathbf{U}}} = \mathbf{I}_{\delta_{\mathbf{D}_{\mathbf{I}}}}$.

Theorem 3.7. Let δ be a principle, enriched (L, \odot) proximity on X. We define $c_{\delta}: L^X \to L^X$ as follows:

$$c_{\delta}(\lambda) = \bigwedge \{ \rho \in L^X \mid (\rho^*, \lambda) \notin \delta \}.$$

Then:

(1) (C1) $c_{\delta}(1_{\emptyset}) = 1_{\emptyset}$.

(C2) $\lambda \leq c_{\delta}(\lambda)$.

(C3) $c_{\delta}(\lambda \oplus \mu) \leq c_{\delta}(\lambda) \oplus c_{\delta}(\mu)$.

(C4) $c_{\delta}(c_{\delta}(\lambda)) = c_{\delta}(\lambda), \ \forall \lambda \in L^{X}$.

(C5) $c_{\delta}(\alpha \odot \lambda) = \alpha \odot c_{\delta}(\lambda), \ \forall \alpha \in L, \lambda \in L^X.$

(C6) $c_{\delta}(\bigvee_{j \in J} \lambda) = \bigvee_{j \in J} c_{\delta}(\lambda_j).$

(2) $c_{\delta} \in \Omega(X)$ such that $c_{\delta}^{-1} = c_{\delta}$.

(3) $c_{\delta}(\lambda^*) = (\mathbf{I}_{\delta}(\lambda))^*$ for all $\lambda \in L^X$.

(4) c_{δ} has a right adjoint mapping \mathbf{I}_{δ} satisfying $c_{\delta}(\lambda) \leq$ μ iff $\lambda \leq \mathbf{I}_{\delta}(\mu)$, for each $\lambda, \mu \in L^X$. Furthermore, $\lambda \leq \mathbf{I}_{\delta}(c_{\delta}(\lambda))$ and $c_{\delta}(\mathbf{I}_{\delta}(\mu)) \leq \mu$.

Proof. (C1) and (C2) are obvious.

(C3) Suppose there exist $\lambda_1, \lambda_2 \in L^X$ such that

$$c_{\delta}(\lambda_1 \oplus \lambda_2) \not\leq c_{\delta}(\lambda_1) \oplus c_{\delta}(\lambda_2)$$

By the definition of c_{δ} and Lemma 2.2(7), there exist $\rho_i \in L^X$ with $(\rho^*, \lambda_i) \notin \delta$ for i = 1, 2 such that

$$c_{\delta}(\lambda_1 \oplus \lambda_2) \not\leq \rho_1 \oplus \rho_2$$

Since $(\rho_i^*, \lambda_i) \notin \delta$ for $i = 1, 2, (\rho_1^* \odot \rho_2^*, \lambda_1 \oplus \lambda_2) \notin \delta$. Then $c_{\delta}(\lambda_1 \oplus \lambda_2) \leq \rho_1 \oplus \rho_2$. It is a contradiction. Hence c_{δ} holds (C3).

(C4) Suppose there exists $\lambda \in L^X$ such that $c_{\delta}(c_{\delta}(\lambda)) \not\leq c_{\delta}(\lambda)$. By the definition of $c_{\delta}(\lambda)$, there exist $\rho \in L^X$ with $(\rho^*, \lambda) \notin \delta$ such that $c_{\delta}(c_{\delta}(\lambda)) \not \leq \rho$. On the other hand, since $(\rho^*, \lambda) \notin \delta$, there exists $\gamma \in L^X$ with $(\rho^*, \gamma) \not\in \delta$ and $(\gamma^*, \lambda) \not\in \delta$. It implies $c_{\delta}(\gamma) \leq \rho$ and $c_{\delta}(\lambda) \leq \gamma$. Hence $c_{\delta}(c_{\delta}(\lambda)) \leq c_{\delta}(\gamma) \leq \rho$. It is a contradiction. Hence $c_{\delta} \circ c_{\delta} \leq c_{\delta}$. By the definition of c_{δ} , $c_{\delta} \circ c_{\delta} \geq c_{\delta}$.

(C5)

$$\alpha \odot c_{\delta}(\lambda) = \alpha \odot \bigwedge \{ \rho \in L^{X} \mid (\rho^{*}, \lambda) \notin \delta \}$$

= $\bigwedge \{ \alpha \odot \rho \mid (\alpha^{*} \oplus \rho^{*}, \alpha \odot \lambda) \notin \delta \}$
= $c_{\delta}(\alpha \odot \lambda).$

(C6) Suppose $c_{\delta}(\bigvee_{j\in J}\lambda_j)\not\leq\bigvee_{j\in J}c_{\delta}(\lambda_j)$. Since L is a completely distributive lattice, for each $j\in J$, there exists $\rho_j \in L^X$ with $(\rho_j^*, \lambda_j) \not\in \delta$ such that

$$c_{\delta}(\bigvee_{j\in J}\lambda_j)\not\leq\bigvee_{j\in J}\rho_j.$$

Since δ is principle, $(\rho_j^*, \lambda_j) \notin \delta$ implies $(\bigwedge_{j \in J} \rho_j^*, \bigvee_{j \in J} \lambda_j) \notin \delta$. Hence $c_\delta(\bigvee_{j \in J} \lambda_j) \leq \bigvee_{j \in J} \rho_j$. It is a contradiction. Hence $c_\delta(\bigvee_{j \in J} \lambda_j) \leq \bigvee_{j \in J} c_\delta(\lambda_j)$. Since $\delta \leq \mu$ implies $c_\delta(\delta) \leq c_\delta(\mu)$, we have $c_\delta(\bigvee_{j \in J} \lambda_j) \geq \bigvee_{j \in J} c_\delta(\lambda_j)$.

(2) By (1), $c_{\delta} \in \Omega(X)$. Let $(\rho^*, \lambda) \notin \delta$. Then $(\lambda, \rho^*) \not\in \delta$ implies $c_{\delta}(\rho^*) \leq \lambda^*$. Thus,

$$c_{\delta}^{-1}(\lambda) = \bigwedge \{ \mu \in L^X \mid c_{\delta}(\mu^*) \le \lambda^* \}$$

$$\leq \bigwedge \{ \rho \in L^X \mid (\rho^*, \lambda) \not\in \delta \} = c_{\delta}(\lambda).$$

Let $c_{\delta}(\mu^*) \leq \lambda^*$. Since $c_{\delta}(\mu^*) = \bigwedge \{\rho_i \in L^X \mid$ $(\rho_i^*, \mu^*) \not\in \delta\}, \text{ by (P), } (\bigvee \rho_i^*, \mu^*) \not\in \delta. \text{ Since } \lambda \leq (c_\delta(\mu^*))^* = \bigvee \rho_i^*, \text{ we have } (\bigvee \rho_i^*, \mu^*) \not\in \delta \text{ implies } (\lambda, \mu^*) \not\in \delta. \text{ So, } (\mu^*, \lambda) \not\in \delta. \text{ Hence } c_\delta^{-1} \geq c_\delta.$

(3) For all $\lambda \in L^X$, by Lemma 2.2(5),

$$c_{\delta}(\lambda^{*}) = \bigwedge \{ \rho \in L^{X} \mid (\rho^{*}, \lambda^{*}) \notin \delta \}$$
$$= \left(\bigvee \{ \rho^{*} \in L^{X} \mid (\rho^{*}, \lambda^{*}) \notin \delta \} \right)^{*}$$
$$= (\mathbf{I}_{\delta}(\lambda))^{*}.$$

(4) Since c_{δ} is a join-preserving map from (C6), it has a right adjoint $c_{\delta}^{\leftarrow}(\lambda) = \bigvee \{\rho \in L^X \mid c_{\delta}(\rho) \leq \lambda\}$. We only show that $c_{\delta}^{\leftarrow} = \mathbf{I}_{\delta}$.

Suppose there exists $\lambda \in L^X$ such that $c_{\delta}^{\leftarrow}(\lambda) \not \leq \mathbf{I}_{\delta}(\lambda)$. By the definition of c_{δ}^{\leftarrow} , there exists $\rho \in L^X$ with $c_{\delta}(\rho) = \bigwedge \{\mu_i \mid (\mu_i^*, \rho) \not \in \delta\} \leq \lambda$ such that $\rho \not \leq \mathbf{I}_{\delta}(\lambda)$. Since δ is principle, $(c_{\delta}(\rho)^*, \rho) \not \in \delta$. Since $c_{\delta}(\lambda)^* \geq \lambda^*$, by (P2), $(\lambda^*, \rho) \not \in \delta$. So, $\mathbf{I}_{\delta}(\lambda) \geq \rho$. It is a contradiction. Hence $c_{\delta}^{\leftarrow} \leq \mathbf{I}_{\delta}$.

Suppose there exists $\lambda \in L^X$ such that $c_{\delta}^{\leftarrow}(\lambda) \not\geq \mathbf{I}_{\delta}(\lambda)$. By the definition of \mathbf{I}_{δ} , there exists $\rho \in L^X$ with $(\rho, \lambda^*) \not\in \delta$ such that $c_{\delta}^{\leftarrow}(\lambda) \not\geq \rho$. Since $(\rho, \lambda^*) \not\in \delta$, $c_{\delta}(\rho) \leq \lambda$. So, $c_{\delta}^{\leftarrow}(\lambda) \geq \rho$. It is a contradiction. Hence $c_{\delta}^{\leftarrow} \geq \mathbf{I}_{\delta}$.

Let $c_{\delta}(\lambda) \leq \mu$. By the definition of $c_{\delta}^{\leftarrow} = \mathbf{I}_{\delta}$, $\lambda \leq \mathbf{I}_{\delta}(\mu)$.

Let $\lambda \leq \mathbf{I}_{\delta}(\mu) = \bigvee \{ \rho_i \in L^X \mid c_{\delta}(\rho_i) \leq \mu \}$. Since $\lambda \leq \bigvee \rho_i$, we have $c_{\delta}(\lambda) \leq c_{\delta}(\bigvee \rho_i) = \bigvee c_{\delta}(\rho_i) \leq \mu$.

Furthermore, $c_{\delta}(\lambda) \leq c_{\delta}(\lambda)$ iff $\lambda \leq \mathbf{I}_{\delta}(c_{\delta}(\lambda))$. Also, $\mathbf{I}_{\delta}(\mu) \leq \mathbf{I}_{\delta}(\mu)$ iff $c_{\delta}(\mathbf{I}_{\delta}(\mu)) \leq \mu$.

Theorem 3.8. Let δ be a principle, enriched (L, \wedge) -proximity on X. We define a subset \mathbf{U}_{δ} of $\Omega(X)$ as follows:

$$\mathbf{U}_{\delta} = \{ \phi \in \Omega(X) \mid c_{\delta} \le \phi \}.$$

Then (1) \mathbf{U}_{δ} is an Hutton (L, \triangle) -uniformity induced by δ where

$$\phi_1 \triangle \phi_2(\lambda) = \bigwedge \{ \phi_1(\lambda_1) \land \phi_2(\lambda_2) \mid \lambda = \lambda_1 \land \lambda_2 \}.$$

$$(2) \, \delta_{\mathbf{U}_{\delta}} = \delta$$

Proof. First, we show that $c_{\delta} \triangle c_{\delta} = c_{\delta}$.

Suppose there exists $c_\delta\triangle c_\delta(\lambda)\not\geq c_\delta(\lambda)$. Then there exist $\lambda_1,\lambda_2\in L^X$ with $\lambda=\lambda_1\wedge\lambda_2$ such that $c_\delta(\lambda_1)\wedge c_\delta(\lambda_2)\not\geq c_\delta(\lambda)$. By the definition of c_δ , there exist $\rho_i\in L^X$ with $(\rho_i^*,\lambda_i)\not\in \delta$ for i=1,2 such that $\rho_1\wedge\rho_2\not\geq c_\delta(\lambda)$. On the other hand, since $(\rho_i^*,\lambda_i)\not\in \delta$ for i=1,2, $(\rho_1^*\vee\rho_2^*,\lambda_1\wedge\lambda_2)\not\in \delta$. So, $\rho_1\wedge\rho_2\geq c_\delta(\lambda)$. It is a contradiction. Hence $c_\delta\triangle c_\delta\geq c_\delta$. Since $c_\delta\triangle c_\delta(\lambda\wedge 1_X)\leq c_\delta(\lambda)\wedge c_\delta(1_X)=c_\delta(\lambda)$, we have $c_\delta\triangle c_\delta\leq c_\delta$.

- (U1) Obvious. (U2) Let $\phi_i \in \mathbf{U}_\delta$ for i=1,2. Then $c_\delta \leq \phi_i$. Since $c_\delta = c_\delta \triangle c_\delta \leq \phi_1 \triangle \phi_2$, $\phi_1 \triangle \phi_2 \in \mathbf{U}_\delta$
- (U3) For $\phi \in \mathbf{U}_{\delta}$ with $c_{\delta} \leq \phi$, there exists $c_{\delta} \in \mathbf{U}_{\delta}$ such that $c_{\delta} \circ c_{\delta} = c_{\delta} \leq \phi$.
- (U4) For $\phi \in \mathbf{U}_{\delta}$ with $c_{\delta} \leq \phi$, since $c_{\delta}^{-1} = c_{\delta}$, $c_{\delta}^{-1} \leq \phi^{-1}$ implies $\phi^{-1} \in \mathbf{U}_{\delta}$.
- (2) Let $(\lambda, \rho) \notin \delta_{\mathbf{U}_{\delta}}$. Then there exists $\phi \in \mathbf{U}_{\delta}$ such that $\phi(\lambda) \leq \rho^*$. Since $\phi \in \mathbf{U}_{\delta}$, there exists $c_{\delta} \leq \phi$

such that $c_{\delta}(\lambda) \leq \phi(\lambda) \leq \rho^*$. Since $c_{\delta}(\lambda) = \bigwedge \{\rho_i \mid (\rho_i^*, \lambda) \notin \delta\} \leq \rho^*$, then $\rho \leq \bigvee \rho_i^*$ and $(\bigvee \rho_i^*, \lambda) \notin \delta$. Hence $(\rho, \lambda) \notin \delta$.

Let $(\rho, \lambda) \not\in \delta$. Then $c_{\delta}(\lambda) \leq \rho^*$. Since $c_{\delta} \in \mathbf{U}_{\delta}$, $(\lambda, \rho) \not\in \delta_{\mathbf{U}_{\delta}}$.

From Theorems 2.6, 2.8 and 3.8, we can obtain the following corollary.

Corollary 3.9. Let δ be a principle, enriched (L, \wedge) -proximity on X. We define a subset \mathbf{D}_{δ} of $E(X \times X)$ as follows:

$$\mathbf{D}_{\delta} = \{ u \in E(X \times X) \mid \Lambda(c_{\delta}) \le u \}.$$

Then \mathbf{D}_{δ} is an (L, \wedge) -uniformity such that $\delta_{\mathbf{D}_{\delta}} = \delta$.

References

- [1] J. Gutiérrez García, I. Mardones Pérez, M.H. Burton, The relationship between various filter notions on a GL-monoid, J. Math. Anal. Appl., **230** (1999), 291-302.
- [2] J. Gutiérrez García, M. A. de Prade Vicente, A.P. Šostak, A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [16], 81–114.
- [3] U. Höhle, *Probabilistic topologies induced by L-fuzzy uniformities*, Manuscripta Math., **38** (1982), 289–323.
- [4] U. Höhle, *Many valued topology and its applications*, Kluwer Academic Publisher, Boston, (2001).
- [5] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [6] U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory*, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [7] U. Höhle, A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in [6], 123–272
- [8] B. Hutton, *Uniformities on fuzzy topological spaces*, J. Math. Anal. Appl.**58** (1977), 559–571.
- [9] Y.C. Kim, Y.S. Kim, Two types of uniform spaces, (accepted to) J. Fuzzy Logic and Intelligent Systems.
- [10] Y.C. Kim, Y.S. Kim, *Topologies induced by two types uniform spaces*, (submit to) J. Fuzzy Logic and Intelligent Systems.

- [11] Y.C. Kim, S.J. Lee, *Categories of two types uniform spaces*, (accepted to) J. Fuzzy Logic and Intelligent Systems.
- [12] Y.C. Kim, K.C. Min, L-fuzzy proximities and L-fuzzy topologies, Information Sciences, 173 (2005), 93–113.
- [13] W. Kotzé, *Uniform spaces*, Chapter 8 in [6], 553–580
- [14] Kubiak, Mardones-Perez, Prada-Vicente, L-uniform spaces versus I(L)-uniform spaces, (Article in press) Fuzzy Sets and Systems.

- [15] R. Lowen *Fuzzy uniform spaces*, J. Math. Anal. Appl., **82** (1981), 370–385.
- [16] S. E. Rodabaugh, E. P. Klement, *Toplogical And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London)(2003).
- [17] S. E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, Chapter 7 in [16], 199–233.

저 자 소 개

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in the Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy topology and fuzzy logic.