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Abstract

Regularlization approach to regression can be easily found in Statistics and Information Science literature. The
technique of regularlization was introduced as a way of controlling the smoothness properties of regression function. In
this paper, we have presented a new method to evaluate linear and non-linear fuzzy regression model based on
Tanaka’'s model using the idea of regularlization technique. Especially this method is a very attractive approach to

model non-linear fuzzy data.
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1. Introduction

Fuzzy linear regression provides means for tackling
regression problems lacking a significance

amount of data for determining regression models and
with vague relationships between the dependent
variables.

The concept of fuzzy regression analysis was in-
troduced by Tanaka et al. in 1982[17], where an LP
based method with symmetric triangular fuzzy parame-
ters was proposed.

The method is recommend for practical situations
where decisions often have to be made on the basis of
imprecise and partially available data where human esti-
mation is influential. This first attempt of applying fuzzy
regression was done using non-fuzzy input experimental
data. An extension of the idea was reported by Tanaka
et al.[16] comparing the capability to process fuzzy input
experimental data. Heshmaty and Kandell8] applied this
method to forecasting in uncertain environment and
Watadal[20] applied the idea of fuzzy regression to fuzzy
time-series. Fuzzy data analysis, regarded as a
non-statistical procedure for possibilistic systems, was
reported by Tanakal16], and the Tanaka et al.[18]. Fuzzy
regression has been also investigated from the viewpoint
of least square regression. Celmin3[4,5] and Diamond[7]
developed several models for fuzzy least squares fitting.
A collection of recent papers dealing with several ap-
proach to fuzzy regression analysis can be found in [13].

In contrast to fuzzy linear regression, there have
been only a few articles on fuzzy nonlinear regression.
What researchers in fuzzy nonlinear regression were
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concerned with was data of the form with crisp inputs
and fuzzy output. However, some papers, for example
[2,3,6], were concerned with the data set with fuzzy in-
puts and fuzzy output. By the way, in this paper we will
treat fuzzy nonlinear regression for data of the form
with crisp inputs and fuzzy output.

In this paper, we will present a new method to eval-
uate fuzzy regression model based on Tanaka’'s model
using the idea of regularlization method.

Utilizing regularlization method, we can extend
Tanaka’'s model to non-linear case easily. Regularization
techniques {10,11,12,14,15,19] have been extensively stud-
ied in the context of crisp linear regression models. The
technique of regularlization encourages smoother re—
gression function. One of the simplest forms of regularl-
izer is called weight decay. In fact, in this paper we use
weight decay as regularlizer. This approach to regression
is also known as ridge regression.

The main difference between our regularlization meth-
ods approach and the nonlinear approaches by Buckley et
al. [2,3] and Celmins [6] is not crisp input-fuzzy output
versus fuzzy input-fuzzy output, but model-free versus
model-dependent.

The rest of this paper is organized as follows. In
Section 2, we modify Tanaka's fuzzy linear regression
model by utilizing regularlization technique. Section 3
provides details regarding how to extend to non-linear
fuzzy regression model. In Section 4, we consider fuzzy
linear regression model with fuzzy input-output data but
real coefficients. Section 5 gives some conclusions.

2. Fuzzy linear regression
models

First we need to briefly look at how to get solutions
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for crisp multiple linear regression models using regu-
larlization method. See for details [12,15,19]. Suppose we
are given training data {(xpy), - . (%y)}C XX R,
where X denotes the space of the input patterns, for
example R®. For pedagogical reasons, we begin by de-
scribing the case of multiple crisp linear regression func-
tions f, taking the form

f(x)=<w,x>+b with xEX,bER 1

where < +, + > denotes the dot product in X. Flatness
in the case of (1) means that one seeks small w. One
way to ensure this is to minimize the Euclidean norm
ll'wll 2. Hence we can write this problem as the convex
optimization problem as follows.

minimize — || wli?+ C’Zﬁ 2

i=1

(w.x)—b=¢.

The parameter C'= 0 controls the smoothness and
degree of fit. To solve this convex optimization problem,
we use a standard dualization method utilizing Lagrange
multipliers, as described in Fletcher [10]. The key idea is
to construct a Lagrange function from both the objective
function and the corresponding constraint. For details see
[11,14]. Hence we proceed as follows:

subject to y; —

——||w||2+0§]§

i=1
- ;ai(fi —y;, +<{wx; )+ b)

In this paper we will modify this idea for the purpose
of deriving the convex optimization problems for fuzzy
multiple linear regression models and fuzzy nonlinear
regression model with numerical inputs. We now briefly
review the Tanaka’s model[18].

Definition 1. A symmetric fuzzy number A; denoted as
(@;¢;); is defined by

hy (a,i) :L((ai—ai)/Ci)

i

where reference function Lz) satisfies

(i) Llz)=L{(—=z), (i) L{0)=1 and (#) L is
strictly decreasing on [0,+ o).
As examples of Definition 1, L(z)
Liz)=e " and L(z)=1/1+IP are shown in [91,
where p> 0.

=max (0,1 —[zP),

Proposition 1. The possibilistic linear function with fuz-
zy parameters A, = (a;¢),, i=1,- ,d

s

Y=Az, + - + Az,

is obtained by
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d
Z ) =(a,x>,<e.xD>),
where k&= (lzi}, - ), a=(ap, - .2y, and
c:(cl’ 7cd .
Consider a fuzzy linear model,
Y=Waz,+  +Wg,+B=<Wx>+B

where

W—( (le,aW)L - W= (m%’aWd)L) and

B=(m B,a,;) ; are fuzzy parameters. Let us consider
=(m yl,ayl) (for the case of real output,
i=1, -
the Tanaka's fuzzy linear regression model is to de-
,W, and B" which

fuzzy output Y,
Y, =y,) and crisp input x;, ,[. The problem in

termine fuzzy parameters Wl*,

1
minimize JW)= Z ( {ayy, l; >+ C“B)

i=1
subject to oy, a5 =0 and
myl—(<mw,x,->+m3)
< |L71(h)|(<mw,|xi|>+a3—ayi) (3)
(myx)+mg—my
= |L71(h)|(<mw,|x'-|>+a3—ayl),
i=1,- 1

where My = (mwv 7de) and aW:(a\Vl’ ’aW,,)'

In this section, we present a new method to evaluate
fuzzy regression model based on Tanaka's model using
regularlization method.

Let

W= (WI’ ...’Wd)’

for VV,T:(mW,_,al,Wﬁm) ,i=1,--,d

s

My = (mwv ’mm): Qw =~ (aW’ 70‘%)
and By =(Bup - Bu;).
We defined for the case of ay =By,
IWI?= | my | *+ | myg—aw ®
+ | myy+ By I 2
= X mymy)+2{awpay).

Then, we arrive at the following convex optimization
problem for model as follows:

minimize — Il W2+ C’ZE (4)

subject to
(<aw’|xi|>+0‘3):§iv §&=>0
myi—(<mw,x,->+m3)
< |L_1(h)|(<aw,|xi|>+a3—ay‘) (5)
(<mW7xi>+m5)_mY,
< ,L71(h),(<aw,lxil>+au—ay)

, =11
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We construct a Lagrange function as follows:

5]IW|I2+CE£
=1

- Eali(fi - <aw’|xi|>_a3)

N((aw x| +taz—ay)

(mgx; >+ma))

N aw ]y +az—a,)

— ((mgx; >+mB))

—Zlmﬁi ®)
ag; 7 =0,i=1,1

It follows from the saddle point condition that the
partial derivatives of L with respect to the primal varia-
ble (W;B,£) have to vanish for optimality.

8L L .
om,, = Z;(O‘Qi "a2i) =0 (7D
aL ! ! *
] = Eali——|b_1(h)|2(a2i+a2i) :0 (8)
A p i=1 i=1

oL L .
oMy =3my — 2(0‘2:1 —ay)x, =0 €))

l

()l E (0‘21: +0‘;‘)lxi|: 0

=

(10)

=C—a,-n=0 an

o,

Eq.(8) (9) and (10) can be rewritten as follows, re-
spectively,

Zi] (0‘21 am) X;

(12)

l
aw =5 (o a)r”

Substituting (7) ~ (11) into (6) yields the optimization
problem

h)l- ali}|xi|

!
.. 1 -
maximize — || Wil 2+E(a2i—a2i)my

i=1

zlj(am +a21)|L )|ay,

i=1

(13)

where

I W2 =3¢ myp my)+2{ Qg Q)

1y . .
= _,E (0‘2i _O‘Zi)(a2j_0‘2j)< X, X;)
32,]=1

-+

t\)|>—t
MN

[((a2i +a;‘)|Lil h)l— a”)

=1

((a2j+a2j)|L_1(h)|_Q1j)] = x))
subject to
!
Doy —ay)=0,05) 2 0,i=1,d, (14)
i=1
Define o, Zmax{am,o} and o'y :(a’Wl, 70"Wk)

Then we have
Y=<(W,x>+B=({(myx),{a&'yx))+B

where W'=(m .0’ ).

Let
Hy(a) = my — <vaX->
+z7! |(<aw,|x|>+a ay)
and
Hi(o) = —<mw,x->

|L I((aw,|x|>+a ay)

From (5), we have H(ag)<my< Hp(ay) for all i.
Hence, we should take my and a5 as follow ;

ap= inf{a > 0] h [HLi(a),H,";(a)] = @} and
i=1

é [ Ha), HR(O‘B)]

Table 1

z Y= (y’ay)

1 (—1.6,0.5)

3 (—1.8,1.0)

4 (—1.0,05)
5.6 (12, 1.0)
7.8 (2.2,0.5)
10.2 (6.8, 1.0)
11.0 (10.0, 0.5)
11.5 (1.0,1.0)
12.7 (10.0, 0.5)

Example 1. We consider a data from Gunn[l12], which
were constructed using the original and symmetric fuzz-
fied Y, as shown in Table 1. Using the data in Table 1,
the obtained results from Tanaka’s model and our model
with h=0.5 and L(z) =1—7 are shown in Table 2. In
this example for our model, C'=500 is used but it heu-
ristically determined. In fact, the values of ¢ = 500 give
almost same results. Comparing the result of AW), in-
dex of fuzziness, for Tanaka’s model, the resulting sol-
utions are very close even though different methods are
used.
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Table 2
Model Fuzzy coefiicient AW)  index of
fuzziness
m VV: 1-023,
Tanaka's oy =0274,
model mp= —3.735, 40.371
oy =2,453
m = 1.208,
Our model MO 45788
ur mode L= 4917, .
ap=4,660
15
10
5
0
:.A. 2 > "
..
. .
-10
*iyta, ,u,;,l(]_)7 3#}1(0)

Figure 1. The fuzzy linear regression model

3. Fuzzy nonlinear regression

In this section we consider fuzzy nonlinear regression
for the case of numerical inputs and fuzzy output. In
other words, we are interested in making the model
nonlinear. To do this, we need to briefly look at again
the idea used in support vector machine(SVM) for crisp
nonlinear regression. See for details [12,15,19].

In the case where a linear regression function is in-
appropriate SVM makes algorithm nonlinear. This could
be achieved by simply preprocessing input patterns x;

by a map 9 : R®— F into some feature space F, as de-
scribed in [1] and then applying the standard SVM re-
gression algorithm. A rather old trick [1] can be used to
accomplish this in an astonishingly straightforward way.
First notice that the only way in which the data appears
in algorithm is in the form of dot products {x;;x;). The
algorithm would only depend on the data through dot
products in F, ie. on functions of the form
(®(x;),9(x,)). Hence it suffices to know and use
K(x;,%;) ={®(x,),®(x,)) instead of ¥( ) explicitly. We
can overcome the curse of dimensionality by using this
kernel. The well used kernels for regression problem are
given below.
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K(x,y) = {x,y>+1)? : Polynomial kernel
~x-yl?

Kx,y)=e * . Gaussian kernel

K(x,y) = tan h(S< x,y>+6)

: Hyperbolic tangent kernel

Hence we arrive at the following optimization problem
for the nonlinear model by replacing <(x;x;) with

K(x;x;) in the optimization problem for the model.

maximize ——IIW|I2+Z(a21 ag)my,
i=1
i

+ Z(am +a;-)|L7](h)la "

i=1

where

I Wi?=

]
Z_] (0‘21 _a;i)(am’ - a;j)]{( X;; xj)
!

Z [((aZi +a;i)|‘l’71

((%j"‘” 0‘2;‘)|L71(h)l"a1j) ] A(|x %)

and A(x,y) is the kernel function performing the non-
linear mapping into feature space.
Here, we should notice that the constraint are un-

!
changed, E <a2i - a;z’)

w[.—n

h)|— ali)

*

_ =0, of) > 0.
In case of
;ll[((%i+a;)lL*1(h)|—a”)]K(1xi|,|xj|)z
we have

Y= (%g(am “a;>K(|xi|:x)’
] (P S P

And mp, ap can be obtained as follow:

!
. inf{a > 0| [H(a

i=1

) Hi(a)] = @} and

mp€ h1 [HLi(aB)7H1%(O‘B)]-

i(a%—a;j)[{(xj,xi)ﬂll_1(h)|
o
{%Z[(aw%—a?m[] 1(h) |—a1]]l((x xi)—l—a—ayi}

QJ]»—-A

]
=My~ %g(a%_a;j)lf(xj’ x;ﬁ)”|L71(h)|
h)l——alj]K(xj,xi)+a —aYi}

i
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Example 2. We now apply fuzzy nonlinear regression
model to the data in Table 1 with hA=05 and
L(z)=1—2z again. According to Gunn [12], the non-
linear regression model is appropriate for the original
crisp data of Table 1. When we apply fuzzy nonlinear
regression model to this data set, we have the residual
sum 1.667. Hence we can recognize fuzzy nonlinear
model is more appropriate than the linear model. For this
data set we use Gaussian kernel with o¢=1.0 and
C=500. These parameters are determined in the heu-
ristic way.

-2

-4

ryta, —:puy'(1),6,'(0)
Figure 2. The fuzzy non-linear regression model

4. Fuzzy input-output with real coefficients

In this section, we finally consider the following fuzzy
linear regression model with fuzzy input-output data but
real coefficients,

V=< w,X>+B, (15)

|w11|)
X =(mysox)), Yi=

3

where W= (w,, -,w,) is real vector, lwl= (jw,|, --
wd X, = (X, = (g )
(myl,ayi), =11

We consider the following convex optimization prob-
lem for this model;

minimize + II wil?+ C’Zg (16)
i=1
subject to
(<|W|’°‘X,>_a3):§w £=20,i=1,,1
my“—(<w,m‘,¢>+m1})
< IL_](h)|(<|w|,a}4>+aB—aYi) an

(wmy)tmy—my
< |L~1(h)|(<|w|, ax)tos—ay)

We construct a Lagrange function as follows:

=—uwu2+c§]g

i=1

11(5 (Iwl oy )= o)

—ia L=

2 ((Iwh ey Yo —ay)
l <<wmx>+ms>>
}_] AL WN((Iw ey Y+ ap—ay)
= (o)

18)

—2777:@'
i=0
ol n = 0,i=0,-,1
It follows from the saddle point condition that the
partial derivatives of L wri. the primal variable
(w,B,£) have to vanish for optimality.

6‘:5 = Z}l(az, a3) =0 (19)
5%% - é 2(% +ap) =0 (20)
vav = w—gahsgn(w)a,(
‘l(h)|§ sgn(w)ozxi(a2i +ay)
- i}(a% —ay)my =0 @1
where
sga(w)= (sgn{uw,) sgn(uw,). - sgn(uw,),
and
sgn(w)ay=(sgn(w)ay, - sgn{w)ay ),
%_ C—ay—n,=0, i=0,. 22)
Eq.(21) can be rewritten as follows,
w= 12% sgn(w)ay
+|L‘1(h)|1}13] sgn(w)ay (ay +ay)
2(% an)my (23)
and therefore
Y= §<a”sgn(w)axi,x>
+ lL“(h)\F‘Zjl( sgn(w)ay oy +ay), X)
+§<(a2i—a;)mx, X)+B (24)
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Substituting (19) ~ (22) into (18) vyields the opti-
mization problem

!
maximize —5 | W1 *+ 30y, — o )m,
=1

+3(ay +a;i)|L_l(h)|ax (25)

i=]

where

!
lwll?=Y; <a1isgn(w)axi,a1jsgn(w)a)(]>
ig=1
!

+L7Y(n)? E (0‘22' +a;‘)<o‘2j+a;j)

ij=1

(sgn(w)ay,sgn(wla, )

|
+ E (aQi—a;)(an-—a;j) <mX‘_7 ij>

=1
I
+2AL7 (R Y] ali(an +a;j)
=1

(sgn(w)a,, sgn(wlay )

22 (g + g — )

5,j=1

(sgn(w)a,, my )

l
+2 E ali(a2j~a;j) <S@(W)01X, mxj> (26)
=1
subject to
!
E(“z:‘_a;i>:07 ag) Z0,e=1,,0, 27
i=1

m, and az can be computed similarly as previous

case as follows;

ap= inf{a >0 rl] [Hg(a),H,é(a)} = @} and

i=1

Hia) = my, — (wW,my )
+|Lfl(h)|(< w, axl>+a—aY’)
and
Hi(a) = my —(W,my )

—[Lil(h)l(<w, aX,>+O‘_O‘Y,-)

5. Conclusion

In this paper, we have presented a new method to
evaluate fuzzy linear and fuzzy non-linear regression
models based on Tanaka's approach using the idea of
regularlization technique. From the results in examples
we realize that the derived fuzzy regression models de~
rive the satisfying solutions and is a very attractive ap-
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proach to modeling fuzzy date, especially for fuzzy
non-linear regression model. The main formulation re-
sults in a global quadratic optimization problem with box
constraints. However this is not a computationally ex-
pensive way. Kernel parameter o and control parameter
C determined in a heuristic way. The obvious question
that arises is which are the best for a particular prob-
lem? hence we need model selection method to determine
these parameters.
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