DOI QR코드

DOI QR Code

A Performance Comparison of Extended and Unscented Kalman Filters for INS/GPS Tightly Coupled Approach

INS/GPS 강결합 기법에 대한 EKF 와 UKF의 성능 비교

  • 김광진 (서울대학교 기계항공공학부/항공우주신기술연구소) ;
  • 유명종 (국방과학연구소 기술연구본부) ;
  • 박영범 (국방과학연구소 기술연구본부) ;
  • 박찬국 (서울대학교 기계항공공학부/항공우주신기술연구소)
  • Published : 2006.07.01

Abstract

This paper deals with INS/GPS tightly coupled integration algorithms using extend Kalman filter (EKF) and unscented Kalman filter (UKF). In the tightly coupled approach, nonlinear pseudorange measurement models are used for the INS/GPS integration Kalman filter. Usually, an EKF is applied for this task, but it may diverge due to poor functional linearization of the nonlinear measurement. The UKF approximates a distribution about the mean using a set of calculated sigma points and achieves an accurate approximation to at least second-order. We introduce the generalized scaled unscented transformation which modifies the sigma points themselves rather than the nonlinear transformation. The generalized scaled method is used to transform the pseudo range measurement of the tightly coupled approach. To compare the performance of the EKF- and UKF-based tightly coupled approach, real van test and simulation have been carried out with feedforward and feedback indirect Kalman filter forms. The results show that the UKF and EKF have an identical performance in case of the feedback filter form, but the superiority of the UKF is demonstrated in case of the feedforward filer form.

Keywords

References

  1. A. D. King, 'Inertial navigation - Forty Years of Evolution,' GEC Review, vol. 13, no, 3, 1998
  2. D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, IEE Radar, Sonar, Navigation and Avionics Series, 1997
  3. J. A. Farrel and M. Barth, The Global Positioning System & Inertial Navigation, McGraw-Hill, 1998
  4. G. T. Schmidt, INS/GPS Technology Trends, NATO RTO Report, RTO-EN-SET-064, 2004
  5. G. M. Siouris, Aerospace Avionics Systems: A Modern Synthesis, Academic Press, Inc., 1993
  6. S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, 'Circumventing dynamic modeling: Evaluation of the error-state kalman filtering applied to mobile robot localization,' Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Marriott Hotel, Renaissance Center, Detroit, Michigan, 1999
  7. 이태규, 김광진, 제창해, 'INS/GPS 결합 칼만필터의 측정치 스무딩 및 예측,' 제어.자동화.시스템공학회 논문지 제7권 제11호, 2001년 11월
  8. 조성윤, 박찬국, '강결합 기법을 이용한 WNS/GPS 결합 항법시스템,' 제어.자동화.시스템공학회 논문지 제8권 제12호, 2002년 12월
  9. G. T. Schmidt and R. Phillips, INS/GPS Integrating Architectures, Draper Laboratory Report, 4104, Cambridge, Massachusetts, 2003
  10. 김광진, 박찬국, 유명종, 'UKF를 이용한 INS/GPS 알고리즘,' 제13차 유도무기학술대회 논문집, 2005년 10월
  11. 김광진, 박찬국, 박영범, 'Unscented 변환에 기반한 INS/GPS 강결합 알고리즘,' 제12차 GNSS Workshop, 제주, 2005년
  12. J. Wendel, A. Maier, J. Metzeger, and G. F. Trommer, 'Comparison of extended and sigma-point kalman filters for tightly coupled GPS/INS integration,' AIAA Guidance, Navigation and Control Conference, AIAA 2005-6055, San Francisco, California, Aug. 2005
  13. E. A. Wan and R.Y. Merwe, The Unscented Kalman Filter, in Kalman Filtering and Neural Networks, Wiley Inter Science, 2001
  14. S. Julier and J. Uhlmann, 'Unscented filtering and nonlinear estimation,' Proceedings of IEEE, vol. 92, no. 3, August 2004 https://doi.org/10.1109/JPROC.2003.823141
  15. S. Julier and J. Uhlmann, 'The scaled unscented transformation,' Proceedings of American Control Conference, 2002 https://doi.org/10.1109/ACC.2002.1025369
  16. 김광진, 박찬국, '스케일 Unscented 변환의 변수 해석,' 2006 제어.자동화.시스템 심포지엄, 2006년 6월
  17. 박찬국, 이형근 등, 지상항법 다중센서 오차추정 알고리즘 개발, 연구보고서, 서울대학교 항공우주신기술연구소, 2005년 10월

Cited by

  1. Outdoor Localization for a Quad-rotor using Extended Kalman Filter and Path Planning vol.20, pp.11, 2014, https://doi.org/10.5302/J.ICROS.2014.14.0013
  2. Nonlinear Filtering Approaches to In-flight Alignment of SDINS with Large Initial Attitude Error vol.20, pp.4, 2014, https://doi.org/10.5302/J.ICROS.2014.13.1884