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NOTES ON RANDOM FIXED POINT THEOREMS

Y. J. Cuo* AND M. FirRDOSH KHAN AND SALAHUDDIN**

ABSTRACT. The purpose of this paper is to establish a random fixed point theorem
for nonconvex valued random multivalued operators, which generalize known results
in the literature. We also derive a random coincidence fixed point theorem in the
noncompact setting.

1. INTRODUCTION AND PRELIMINARIES

Random (or Stochastic) Functional Analysis began in the fifties last century
with the development of functional analysis (in particular, nonlinear analysis) and
probability theory. The theory of random analysis is still in the formative stage,
however, research on random analysis (specifically, random equations) are mainly

performed along two lines.

(I) The fundamental studies on random differential equations associated with
Markov processes, initiated by It in 1951,

(IT) The studies on classical nonlinear differential with random right-hand sides
and random kernels, defined on random domains, initiated by the Prague
school of Probabilist in early sixties, (see Spacek [10], Zhang [18] and refer-
ences therein) who studies Fredholm integral equations with random kernels.

The study of random operator equations which forms a central topic in this
discipline. The distinction between a deterministic and random approach to the
formulation of operator equations lies mainly in the nature of the questions that
some authors try to answer and in the interpretation of the results. The random
approach permits a greater generality and flexibility than that offered by a deter-
ministic approach. Moreover, it permits the inclusion of probabilistic feature in
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the equation, which may play an essential role in making the connection between
operator equations and the real phenomena they purport to describe.

The study of random fixed points forms a central topic in this area. Random
fixed point theory has received much attention since the publication of the survey
article by Bhrucha-Ried [3] in 1976, in which the stochastic version of some well
known theorems were proved. Since then there has been a lot of activity in this
area. For detail, see [7]-[9] and [11]-{13] and the references therein.

This paper is concerned with recent research work in this field with consideration
([1], [5]-[10], [13], {17]). We establish random fixed point theorems for non-convex
valued random multi-valued operator and also derive coincidence fixed point theorem
in non-compact settings.

We shall use the following notation and definitions.

Let A be non-empty set. We shall denote by 24 the family of all nonempty
subsets of 4. If A is a nonempty subset of a topological vector space X. We shall
denote by intx(A) and co(A) the interior of A in X and the convex hull of A in X
respectively.

A measurable space (§2,Y) is a pair where Q a set and ¥ a o-algebra of subsets of
Q. If AcC X and P is a nonempty family of subsets of X, we shall denote by DN A
the family {DN A : D € D} and by ox (D) the smallest o-algebra on X generated
by D. If X is a topological vector space with topology 7x, we shall use B(X) to
denote ox(7x), the Borel o-algebra on X if there is no ambiguity on the topology
TX.

Let F : (©,%) — 2% be a mapping. Then F is said to be measurable (resp.,
weakly measurable) if, for every closed (resp., open) subset B of X the set F~}(B) =
{weQ, FlwyNB #0} eX.

Note that, if X is a metric space, the measurability implies the weak measur-
ability. If, in addition, F' is a compact-valued mapping, then the measurability is
equivalent to the weak measurability.

A function f : @ — X is a measurable selector of F if f is a measurable and,
for any w € Q, f(w) € F(w). A mapping F' : Q x A — X is called a random
operator if, for any fixed ¢ € A, the mapping F(-,z) : 2 — X is measurable. A
measurable mapping z : @ — A is said to be a random fixed point of a random
operator F': 2 x A — X if, for every w € Q, z(w) = F(w, z(w)). A random operator
F:Qx A— X is said to be continuous if, for all w € Q, the map F(w,-): 4 = X

is continuous.
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Every continuous random operator from  x X — Y is separable.

Theorem A ([6]). Let F : Q@ x X — Y be a separable random operator such that
F~Y(w) is strongly upper semicontinuous almost surely. Then F1:OxY —2% s

a multivalued random operator.

Let X and Y be two topological vector spaces and F : Q x X — 2¥ be a multi-
valued continuous random operator. The inverse of F', which is denoted by F~1,
is the multi-valued random operator from D(F'), the range of F, to X defined by
z(w) € F~Yw, y(w)) for any fixed w € Q if and only if

y(w) € F(w,z(w))
for any fixed w € Q.

Theorem B ([4, Theorem 2]). Let K be a nonempty compact convexr subset of a
Hausdorff topological vector space X and let S : K — 2K be a multifunction such
that

(a) for all z € K, S(z) is nonempty and conver,
(b) for ally € K, S™(y) is open in K.

Then T has o fized point, that is, there exists xg € K such that zo € T(zo).

Theorem C ([2], [12]). Let K be a nonempty compact convex subset of a Hausdorf]
topological vector space X and S,T : K — 2K be two multi-functions. Assume that
(a) for all z € K, co(S(z)) < T(z) and S(z) is nonempty,
(b) K = Y{intgS~(y): y€ K}.
Then T has a fized point, that is, there exists xg € K such that xo € T(zo).

2. A RanpoM FIXED PoINT THEOREM

In this section, we prove the following random fixed point theorem.

Theorem 2.1. Let (Q,X) be a measurable space, K a nonempty convex subset of a
Hausdorff topological vector space X and S,T : Q x K — 2K the two multi-valued
random operator. Assume that

(a) for all w € Q, such that z(w) € K, co(S{w,z(w))) € T(w,z(w)) and
S(w, z(w)) is nonempty,
(b) K = {intgS Y (w,y(w)) : y(w) € K}, for each fized w €
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(¢) there ezists a nonempty subset By of K such that By contained in a compact
convez subset By of K and the set D = (V{K\intx S~Hw,y(w)) : y(w) € By
for any fixred w € Q} is either empty or compact.

Then there exists a measurable map xo : Q@ — K such that for any w € Q, zo(w) €
T(w, zo(w)).
Proof. We first assume that D = ) and define a multi-valued mapping G : Q2 x B; —
281 by G(w, z(w)) = S(w, z(w)) N By for all z(w) € By and w € Q.

For all w € Q, z(w) € By and G(w, z(w)) is nonempty. Indeed, suppose that the

exists z(w) € B such that G(w, z(w)) is nonempty for all w € Q. Then there exists
z(w) € Bj such that

S(w,z(w))NB; =0
for all w € §). Hence, for all Z(w) € Bj, z(w) € S(zp,z(w)) and so F(w) &
S Y w, z(w)) D intx S (w, z(w)) for all w € Q. This show that
z(w) € K\intg S (w, z(w))

for all Z(w) € B. Hence Z(w) € [ {K\intxS 1 (w,z(w))} for all w € Q. There-
i(w)GBl
fore, D is nonempty, which contradicts our assumption. Moreover, we have

(a1) for all z(w) € By,
co(G(w, z(w)))

co(S{w, z(w)) N By)

< (co(S(w, z(w))) Nco(B1))
€ (T(w, x(w)) N B1)
€ T(w, z(w))
and hence, for any w € Q, co(G(w, z(w))) C T(w, z(w)) for all z(w) € By.
(b1) Since D = N{K\intxS~ (w,y(w)) . y(w) € Bo} = 0, from the assumption
(b), we
have
K = | J{intx S~ (w,y(w)) : y(w) € Bo}
and hence

K =| [intxS™Hw,y(w)) : y(w) € B1}.
By noting that, for any y(w) € B,

G Hw,yW)) = 87w, y(w)) N By
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and
2.ntK‘S’—I("‘Jay(""’)) NB; C ?:ntBl (S_l(w’y(w)) n Bl))
we have
U {ints,GHw,yw)} = U {intp, (S7Hw,y(w)) N B1)}
y(w)eB: y(w)eB
2 U {intg(S7H(w,y(w)) N B}
y(w)eBy
— KNB
=B
for any w € Q. Therefore, |J {intp, G '(w,y(w))} = By for any fixed w € Q.
y(w)eB

Thus, from Theorem C, there exists a measurable mapping zg : w — Bj such that
zo(w) € T(w, zp(w)) for any w € Q.

Now, we will consider the case, when D is a nonempty compact subset of K.
Assume that random operator T has no random fixed point. We divide the remaining
proof into four parts. _

(1) Claim: For any fixed w € Q. K\intx S }w,y(w)) # 0 for all y(w) € K.
Suppose that, for any fixed w € Q, K\intg S~ (w,y(w)) = 0 for some y(w) € K.
Then we have y(w) ¢ K\ intx S~ (w, y(w)), which implies that

y(w) € intx S (w,y(W)) € S~ (w,y(w))
and so
y(w) € S(w,y(w)) € co(S(w,y(w))) € T(w,y(w))
for all w € Q. Therefore, y(w) is a random fixed point of random operator T, which
is a contradiction of our assumption. Hence, for all w € {2,
K\ intg S~ (w,y(w)) # 0
forall we K.

(2) Claim: For any fixed w € Q, the convex hull of each finite subset {y1 (w), yo(w),

,Yn(w)} of K is contained in Ln) {K\intgS™Hw,y;(w)} for all w € Q. Let
{n1(w),y2(w), ,yn(w)} bea ﬁnitézslubset of Kand o; >0foreachi=1,2, |n
with f: a; = 1. Suppose that

1=1

Tw) = Zhayiw) & K\ intk S~ (v, 3i(w))}

i1=1
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for all w € Q. Then F(w) € Nt S (w,y(w)
w € Q. Thus, for all w € Q, F(w) € S™Hw, y;(w)

yi(w) € S(w, Z(w)) C co(S(w, Z(w)))

fori = 1,2, ,n and any fixed
)

foreachi=1,2, ,n and hence

for each i = 1,2, ,n. Therefore, we have
Y amiw) = F(w) € co(S(w, #(w)))
i=1

for all w € . This implies that, for all w € Q, Z(w) € co(S(w, F(w))) C T(w, Z(w)).
Thus Z(w) is a random fixed point of random operator T', which contradicts our as-
sumption. Therefore, the convex hull of each finite subset {y1 (w), y2(w), ,yn(w)}

of K is contained in the union |J{K\intxS 1 (w,y;(w))}-
i=1
(3) Claim: For all y(w) € 9,
) K\ intxeS™ (@, y(w))} #0,
y(w)eA

where A = co(By U {y1(w),92(w), ;ua(w)}) and {y1(w),32(w), ,yn(w)} is 2
finite subset of K.

Since A = co(B1 U {11(w),y2(w), ,yn(w)}) for all w € Q, A is compact and
convex. Suppose that, for all w € Q,

[ {K\intkS™ (w,y(w))} = 0.

y(w)eA

Then we can define a multi-valued mapping Q : A x Q — 24 by
Qw,z(w)) = {yw) € 4 : z(w) € K\ intx S (w,y(w)) for all w € Q}

such that Q(w, z(w)) is nonempty for all z(w) € A. Then, For any fixed w € Q and
y(w) € A,

QH(w,y(w))
={z(w) € A: y(w) € Q(w,z(w)) for any fixed w € O}

={z(w) € A: z(w) & K\ intgS~ (w,y(w)) for any fixed w € Q}
= {z(w) € intg S~ w, y(w)) for any fixed w € 1}

= intgS™Hw,y(w)) N A.

We now define another multi-valued random operator P : Q x A — 24 by

Plw,z(w)) = co(Qw,z(w)))
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for all w € A and any fixed w € 2. Now, we will show that
A= | {intaQ '(w,9(w))}
y(w)eA
for any fixed w € Q. Since, for any fixed w € 2,
() {K\ intxS™ (w,y(w))} =0,
ylw)eA

we have

U {intx SN wy)} = K

“y(w)eA

for any fixed w € Q. Hence we have

42 | {intaQ M w,y(w))

y(w)EA

2 | {intx S Hw,y(w)) N A}
ylw)eA

=KNA=A.

Therefore, by Theorem C, for any fixed w € €, there exists a measurable mapping
xo: 2 — A, zg(w) € A, such that

ng(w) € P(w, zo(w)) = co(Q(w, zo(w))).
This implies that there exists a finite subset {y;(w),y2(w), ,yn(w)} of A such
k
that y;(w) € Q(w,zo(w)) for i = 1,2, ,k, where zo(w) = 3 a; yi(w), a; > 0 for
‘ i=1

k
i=1,2, ,kand ) a; =1. This means that for all w € Q,
i=1 '
zo(w) € K\ intg S (w,y(w)) for all i = 1,2,  ,k,
that is,
zo(w) € intgS™Hw,y(w)) foralli=1,2, k.
Hence
k k
zo(w) = > _ agyi(w) € [ {intk S (w, 3i(w))},
i=1 i=1
which contradicts Claim (2). Therefore, (| {K\intxS '(w,y(w))} = @ for any

y(w)eA
fixed w € Q.
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(4) Claim: From Claim (3), we have

DO (WK intxS™ w, 3i(w))})

=1
=( [ {K\inteS™ w,y)} N (({K\ intk S (w,%(w))})
y{w)EBo i=1
D () {K\intkS M w,yw))} as BoU {y1(w), y2(w), ,yn(w)}
y(w)EA
gA7é®7

that is, for all w € {2, each finite subset {y1(w),y2(w), ,yn(w)} of K, it follows
that N
DN (KN intk S (w,y:(w))}) # 0.

i=1
Since D is compact and {K\ intx S~ (w, y(w))} is closed, {K\ intxg S~ (w,y(w))} N
D is compact for all y(w) € K and w € §2. Hence
[ {K\intxS™ (w,y()} N D) &0
y(w)eK
and so
) K\ intxeS™ (w,y(w))} # 0

y(w)eK
for all w € 2, which contradicts the condition (b). Therefore, the random operator
T has a random fixed point. a

3. A RANDOM COINCIDENCE FIXED PoOINT THEOREM

The following random coincidence fixed point theorem can be easily derived from
Theorem 2.1.

Theorem 3.1. Let (2, L) be a measurable space, K be a nonempty convex subset of
a Hausdorff topological vector space X and ®,1¢ : K x Q — 2K be two multi-valued
random operators. Assume that the following conditions hold:
(a) for each w € Q, z(w) € K, ¢~ Y w, ®(w, z(w))) is nonempty and convex,
(b) K = U{intx® Y w, ¥(w,yw))) : y(w) € K for allw € N},
_ (c) there exists a nonempty subset By of K such that By contained in a compact
convex subset By of K and the set
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D = N{K\intg® (w, ¥(w,yw))) : y(w) € By for all w € N}

is either empty or compact.

Then there exists a measurable map g : & — K such that, for any w € Q,

®(w, zg(w)) NY(w, zo(w)) # 0.

Proof. For any fixed w € Q, taking S = 9! o ® in Theorem 2.1 for S = T and
S(w, z(w)) is convex for all z(w) € K and so we get the conclusion. O

Remark. In deterministic case, our problem reduces to the result of Ansari 1] and
we obtain the results due to Ansari and Yao [2], Tarafdar [13], [14], Theorem 2 of
Browder [4] and Tan et al. [11] as special cases.
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12.
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