Evaluation of Effective Breeders Number (Ne) for Stock Enhancement in Olive Flounder Paralichthys olivaceus Using Microsatellite DNA Markers

Microsatellite DNA marker를 이용한 넙치, Paralichthys olivaceus 방류종묘의 유효어미수 평가

  • Jeong Dal-Sang (Fisheries Resources Enhancement Research Team, NFRDI) ;
  • Kim Kwang-Soo (Fisheries Resources Enhancement Research Team, NFRDI) ;
  • Kim Kyung-Kil (Fish Genetics and Breeding Research Center, South Sea Fisheries Research Institute, NFRDI)
  • 정달상 (국립수산과학원 자원조성연구팀) ;
  • 김광수 (국립수산과학원 자원조성연구팀) ;
  • 김경길 (남해수산연구소 어류육종연구센터)
  • Published : 2006.08.01

Abstract

Genetic change from broodstock to hatchery stock of the olive flounder Paralichthys olivaceus and effective number of breeders (Ne) were investigated by the different fertilized-egg collecting methods; E1 (eggs collected one day after spawning) and E2 (eggs collected two days after spawning) using seven microsatellite loci (Kop2, Kop22, Kop18, Kop3, Kop21, Kop9 and Kop26) for the better understanding of stock enhancement. Observed heterozygosity in three stocks ranged from 0.651 at Kop3 to 0.928 at Kop22, with offspring being slightly higher heterozygous over their parents. However, the genetic reduction of offspring was significant. The offspring allele number per locus was reduced to 23.5% for E1 and 17.6% for E2 of their maternal number. Ne to the hatchery stock was estimated to be 21.9 for E1 and 34.3 for E2. The inbreeding coefficients of populations El and E2 were 0.023 and 0.015, respectively. The present study suggests the extension of the egg collection period for a recovery of the genetic diversity in artificially produced offspring.

현재 우리나라에서 종묘방류량이 많은 넙치의 유전적 다양성을 파악하기 위하여 양식산 어미 암컷 31마리, 수컷 52마리로 총 83마리로부터 생산된 종묘의 유효어미수와 근교계수를 microsatellite DNA marker 7개를 이용하여 추정하였다. 어미집단과 종묘집단의 대립유전자수는 어미집단에 비하여 하루 동안 채란한 E1 종묘집단에서 23.5%가 감소하였고, 이틀 동안 채란한 E2 종묘집단에서는 17.6%가 감소하였다. 유전자 동일성검사 결과, 산란에 관여한 어미수는 E1 종묘집단에서 총 23마리였으며 이중 암컷 9마리, 수컷 14마리였고, E2 종묘집단에서는 35마리로 암컷 15마리, 수컷 20마리였다. 유효 어미집단크기(Ne)를 추정하기 위해 산란에 관여한 실제 어미의 암수의 비율을 보정하면, Ne는 E1 종묘집단에서 21.9마리, E2 종묘집단에서 34.3마리로 추정되었다. 이에 따라 근교계수는 El 종묘집단이 0.023, E2종묘집단은 0.015로서 E2종묘집단에서 낮게 나타났다. 이와 같은 결과는 수산생물의 다양성을 보존하기 위한 FAO의 권고 기준보다 높게 나타남에 따라 유전적 다양성을 향상시키는 방류용 종묘생산 방안이 필요할 것으로 나타났다.

Keywords

References

  1. Allendorf, F. W., 1986. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol., 5, 181-190 https://doi.org/10.1002/zoo.1430050212
  2. Evans, B., J. Bartlett, N. Sweijd, P. Cook and N. G. Elliott, 2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquaculture, 233, 109-127 https://doi.org/10.1016/j.aquaculture.2003.09.037
  3. FAO, 1993. Report of the expert consultation on utilization and conservation of aquatic genetic resources. FAO Fisheries Report No. 491, 58 pp
  4. FAO, 1981. Conservation of genetic resources of fish, Report of the expert consultation on the genetic resources of fish. FAO Fish Tech. Paper., 217, 1-43
  5. Fujio, Y., 1997. Genetic variability and heterotic effect within population of aquatic organism. Fish Genet. Breed Sci., 24, 43-52
  6. Hara, M. and M. Sekino, 2003. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture, 217, 107-114 https://doi.org/10.1016/S0044-8486(02)00069-8
  7. Jeong, D. S., 2003. Studies on genetic evaluation of black sea bream Acanthopagrus schlegeli in stock enhancement. Ph. D. thesis, Hiroshima University, Japan, 71 pp
  8. Jeong, D. S., T. Umino, K. Kuroda, M. Hayashi, H. Nakagawa, J. C. Kang, K. Morishima and K. Arai, 2003. Genetic divergence and population structure of black sea bream Acanthopagrus schlegeli inferred from microsatellite analysis. Fish. Sci., 69, 896-902 https://doi.org/10.1046/j.1444-2906.2003.00705.x
  9. Kim, W. J., K. K. Kim, J. H. Lee, D. W. Park, J. Y. Park and J. Y. Lee, 2003. Isolation and characterization of polymorphic microsatellite loci in the olive flounder (Paralichthys olivaceus). Molecular Ecology Notes, 3, 491-493 https://doi.org/10.1046/j.1471-8286.2003.00524.x
  10. Norris, A. T., D. G. Bradley and E. P. Cunningham, 2000. Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture, 182, 73-83 https://doi.org/10.1016/S0044-8486(99)00247-1
  11. Perez-Enriquez, R, M. Takagi and N. Taniguchi, 1999. Genetic change and pedigree tracing of a hatchery-reared stocks of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture, 173, 413-423 https://doi.org/10.1016/S0044-8486(98)00469-4
  12. Sekino, M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara and Y. Yamashita, 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture, 221, 255-263 https://doi.org/10.1016/S0044-8486(02)00667-1
  13. Sekino, M., M. Hara and N. Taniguchi, 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture, 213, 101-122 https://doi.org/10.1016/S0044-8486(01)00885-7
  14. Takagi, M., N. Taniguchi, D. Cook, R. W. Doyle, 1997. Isolation and characterization of microsatellite loci from red sea bream and detection in closely related species. Fisheries Sci., 63, 199-204 https://doi.org/10.2331/fishsci.63.199
  15. Taniguchi, N. and E. Nugroho, 2001. Estimation of effective population size and inbreeding coefficient in hatchery reared red sea bream by microsatellite DNA markers. Fish Genet. Breed Sci., 30, 89-95
  16. Tessier, N., L. Bernatchez and JM Wright, 1997. Population structure and impact supportive breeding inferred from mitochondrial and microsatellite DNA analyses in land-locked Atlantic salmon Salmo salar L. Mol. Ecol., 6, 735-750 https://doi.org/10.1046/j.1365-294X.1997.00244.x