Comparison of Hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina

  • Baek Jin-Sook (Biomass Research Center, Korea Institute of Energy Research) ;
  • Choi Eun-Hye (Biomass Research Center, Korea Institute of Energy Research) ;
  • Yun Young-Su (Biomass Research Center, Korea Institute of Energy Research) ;
  • Kim Sun-Chang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim Mi-Sun (Biomass Research Center, Korea Institute of Energy Research)
  • Published : 2006.08.01

Abstract

The properties related to the temperature and oxygen stability of the cytoplasmic hydrogenases from the fermentative strict anaerobic bacterium, Clostridium butyricum NCIB 9576 (Cl. butyricum), and purple sulfur phototrophic bacterium, Thiocapsa roseopersicina NCIB 8347 (T. roseopersicina), were compared. The optimum temperatures for the growth of Cl. butyricum and T. roseopersicina were 37$^{\circ}C$ and 25$^{\circ}C$, respectively, whereas those for the H$_2$ evolution of the cytoplasmic hydrogenases prepared from Cl. butyricum (C-H$_2$ase) and T. roseopersicina (T-H$_2$ase) were 45$^{\circ}C$ and 65$^{\circ}C$, respectively. The T-H$_2$ase was more thermostable than the C-H$_2$ase and retained its full activity for 5 h at 50$^{\circ}C$ under anaerobic conditions and 90% of its activity at 60$^{\circ}C$, whereas the C-H$_2$ase lost its activity drastically at 50$^{\circ}C$. The optimum pHs for H$_2$ oxidation of the C-H$_2$ase and T-H$_2$ase were 9.0 and 7.5, respectively. Both enzymes showed a maximum H$_2$ evolution activity at pH 7.0. Under aerobic conditions, 80% of the T-H$_2$ase activity was retained for 10 h at 30$^{\circ}C$, and 50% of the activity remained after 6 days under the same experimental conditions. However, the C-H$_2$ase was labile to oxygen and lost its activity immediately on exposure to air. Therefore, these properties of the T-H$_2$ase are expected to be advantageous for application in in vitro biological H$_2$ production systems.

Keywords

References

  1. Stephenson, M., and L. H. Stickland. 1931. Hydrogenase: A bacterial enzyme activating molecular hydrogen. Biochem. J. 25: 205-214 https://doi.org/10.1042/bj0250205
  2. Kovacs, K. L., B. Fodor, A.T. Kovacs, G Csanadi, G. Maroti, J. Balogh, S. Arvani, and G. Rakhely. 2002. Hydrogenase, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina. Int. J. Hydrogen Energy 27: 1463-1469 https://doi.org/10.1016/S0360-3199(02)00097-6
  3. Gong, G. T., S. J. Sim, M. S. Kim, T. H. Park, and D. Pak. 2005. Dark hydrogen production by a green microalga, Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 1159-1163
  4. Kim, E. J., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of the B800-850 Iightharvesting complex. J. Microbiol. Biotechnol. 15: 1115-1119
  5. Kim,J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, D. J. Kim, J. H. Kim, Y. K. Lee, and D. Pak. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 131-135
  6. Adams, M. W, L. E. Mortenson, and J. S. Chen. 1981. Hydrogenase. Biochim. Biophys. Acta 594: 105-176
  7. Molongoski, J. J. and M. J. Klug. 1976. Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments. Appl. Environ. Microbiol. 31: 83-90
  8. Pfennig, N. and H. G. Truper. 1991. The family Chromatiaceae, pp. 3200-3221. In A. Balows, H. G. Truper, M. Dworkin, W Harder, and K.H. Schleifer (eds.), The Prokaryotes. Springer, Berlin
  9. Rakhely, G., A. T. Kovacs, G. Maroti, B. D. Fodor, G. Csanadi, D. Latinovics, and K. L. Kovacs. 2004. Cyanobacterial type, heterpentameric, $NAD^+$-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl. Environ. Microbiol. 70: 722-728 https://doi.org/10.1128/AEM.70.2.722-728.2004
  10. Bryant, F. O. and M. W. Adams. 1989. Characterization of hydrogenase from the hyperthermophilic Archaebacterium, Pyrococcus furiosus. J. BioI. Chem. 264: 5070-5079
  11. Cammack, R., V. M. Fernandez, and E. C. Hatchikian. 1994. Nickel-iron hydrogenase. Meth. Enzymol. 243: 43-69 https://doi.org/10.1016/0076-6879(94)43007-1
  12. Gorwa, M., C. Croux, and P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178: 2668-2675 https://doi.org/10.1128/jb.178.9.2668-2675.1996
  13. Nishihara, H., Y. Miyashita, K. Aoyama, T. Kodama, Y. Igarachi , and Y. Takamura. 1997. Charaterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogenase-oxidizing bacterium Hydrogenovibrio marinus. Biochem. Biophys. Res. Commun. 232: 766-770 https://doi.org/10.1006/bbrc.1997.6369
  14. Fernandez, V. M., K. K. Rao, M. A. Fernandez, and R. Cammack. 1986. Activation and deactivation of the membranebound hydrogenase from Desulfovibrio desulfuricans, Norway strain. Biochimie 68: 43-48 https://doi.org/10.1016/S0300-9084(86)81066-5
  15. Cammack, R., V. M. Fernandez, and K. Schneider. 1986. Activation and active sites of nickel-containing hydrogenases. Biochimie 68: 85 -91 https://doi.org/10.1016/S0300-9084(86)81072-0