First-Principles Theoretical Study of the Surface Structure of O/Pd(100)-p($2{\times}2$) and the Effect of H Impurities

O/Pd(100)-p($2{\times}2$) 표면구조 및 수소흡착 효과의 제일원리 이론계산 연구

  • Jung Sung-Chul (Department of Physics, Pohang University of Science and Technology) ;
  • Kang Myung-Ho (Department of Physics, Pohang University of Science and Technology)
  • 정성철 (포항공과대학교 물리학과) ;
  • 강명호 (포항공과대학교 물리학과)
  • Published : 2006.07.01

Abstract

We have performed density functional theory calculations for the surface structure of O/Pd(100)-p($2{\times}2$), formed by the adsorption of oxygen atoms of 0.25 ML. The oxygen atoms adsorb preferentially at the fourfold hollow site, and the calculated O-Pd bond length is $2,15{\AA}$, The first interlayer spacing ($d_{12}$) of Pd(100) expands by +0.8% due to the oxygen adsorption, which differs from the experimental value of +3.6% reported by a previous LEED study. Assuming that the LEED sample was possibly contaminated by hydrogen atoms, we also examined the effect of hydrogen impurities on the surface structure. Hydrogen atoms adsorbed on O/Pd(100)-p($2{\times}2$) are found to result in large expansions of $d_{12}$ of Pd(100). Our analysis estimates the amount of hydrogen atoms remaining on the LEED sample as -0.3 ML.

0,25 ML의 산소원자가 흡착하여 이루는 O/Pd(100)-p($2{\times}2$) 표면의 원자구조를 밀도범함수 이론 계산을 통해 연구하였다, Pd(100) 표면의 fourfold hollow 위치가 가장 안정된 산소 흡착위치로 밝혀졌고 O-Pd 결합거리는 $2,15{\AA}$으로 계산되었다. 산소 흡착에 의해 Pd(100) 표면의 첫 번째 층간격 ($d_{12}$) 은 +0,8%의 팽창을 보이는데 이 계산결과는 +3,6%의 팽창을 보고 한 LEED 실험 결과와 차이를 보인다. 차이의 원인으로 시료 표변에 수소 불순물이 존재하였을 가능성을 고려하여 계산한 결과, O/Pd(100)-p($2{\times}2$)에 수소원자가 흡착할 때 $d_{12}$의 팽창이 유발됨을 확인하였다. 수소 흡착량에 따른 구조변화를 분석하여 LEED 시료 표변에 잔존할 것으로 예상되는 수소의 양을 약 0,3 ML로 추정하였다.

Keywords

References

  1. C. Nyberg and C. G. Tengstal, Surf. Sci. 126, 163 (1983) https://doi.org/10.1016/0039-6028(83)90705-7
  2. K. H. Rieder and W. Stocker, Surf. Sci. 150, L66 (1985) https://doi.org/10.1016/0039-6028(85)90198-0
  3. S. L. Chang and P. A. Thiel, J. Chem. Phys. 88, 2071 (1988) https://doi.org/10.1063/1.454084
  4. G. W. Simmons, Y. N. Wang, J. Marcos, and K. Klier, J. Phys. Chem. 95, 4522 (1991) https://doi.org/10.1021/j100164a063
  5. D, Kolthoff, D. J rgens, C. Schwennicke, and H. Pfn r, Surf. Sci. 365, 374 (1996) https://doi.org/10.1016/0039-6028(96)00703-0
  6. G. Zheng and E. I. Altman, Surf. Sci. 504, 253 (2002) https://doi.org/10.1016/S0039-6028(02)01104-4
  7. R. J. Behm, K. Christmann, G. Ertl, M. A. Van Hove, P. A. Thiel, and W. H. Weinberg, Surf. Sci. Lett. 88, L59 (1979) https://doi.org/10.1016/0039-6028(79)90097-9
  8. J. Quinn, Y. S. Li, D. Tian, H. Li, F. Jona, and P. M. Marcus, Phys. Rev. B 42, 11348 (1990) https://doi.org/10.1103/PhysRevB.42.11348
  9. J. Burchhardt, E. Lundgren, M. M. Nielsen, J. N. Andersen, and D. L. Adams, Surf. Rev. Lett. 3, 1339 (1996) https://doi.org/10.1142/S0218625X96002333
  10. M. Methfessel, D. Hennig, and M. Scheffler, Phys. Rev. B 46, 4816 (1992) https://doi.org/10.1103/PhysRevB.46.4816
  11. S. Wilke, D. Hennig, and R. L ber, Phys. Rev. B 50, 2548 (1994)
  12. A. Eichler, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter. 8, 7659 (1996) https://doi.org/10.1088/0953-8984/8/41/012
  13. S. H. Kim, H. L. Meyerheim, J. Barthel, J. Kirschner, Jikeun Seo, and J. S. Kim, Phys. Rev. B 71, 205418 (2005) https://doi.org/10.1103/PhysRevB.71.205418
  14. S. C. Jung and M. H. Kang, Phys. Rev. B 72, 205419 (2005) https://doi.org/10.1103/PhysRevB.72.205419
  15. G. Kresse and J. Furthmaller, Phys. Rev. B 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  16. J. P. Perdew, in Electronic Structure of Solids '91, edited by P. Ziesche, and H. Eschrig (Akademie Verlag, Berlin, 1991)
  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  18. M. Wilde, M. Matsumoto, K. Fukutani, and T. Aruga, Surf. Sci. 482, 346 (2001) https://doi.org/10.1016/S0039-6028(01)00727-0
  19. C. Nyberg and C. G. Tengst l, J. Chem. Phys. 80, 3463 (1984) https://doi.org/10.1063/1.447102