Abstract
In many current wireless packet data system, the short-burst transmissions are used, and training overhead is very significant for such short burst formats. So, the availability of the short training sequence and the fast converging algorithm is essential in the adaptive equalizer. In this paper, the new equalizer algorithm is proposed to improve the performance of a MTLMS (multiple-training least mean square) based DFE (decision feedback equalizer)using the short training sequence. In the proposed method, the output of the DFE is fed back to the LMS (least mean square) based adaptive DEF loop iteratively and used as an extended training sequence. Instead of the block operation using ML (maximum likelihood) estimator, the low-complexity adaptive LMS operation is used for overall processing. Simulation results show that the perfonnance of the proposed equalizer is improved with a linear computational increase as the iterations parameter in creases and can give the more robustness to the time-varying fading.
최근의 무선 패킷데이터 시스템에서 짧은 버스트 데이터의 전송이 많이 사용되고 있고 훈련 심볼에 의한 오버헤드가 심각한 문제를 야기할 수 있다. 따라서 적응등화기의 설계에 있어서 짧은 훈련심볼과 빠른 수렴 알고리즘이 필수적인 문제라고 할 수 있다. 본 논문에서는 짧은 훈련심볼을 사용하는 MTLMS (multiple-training least mean square) 기반의 DFE (decision feedback equalizer) 의 성능을 향상시킬 수 있는 등화알고리즘을 제 안한다 . 제안된 알고리즘에서 DEF의 출력 은 LMS(least mean square) 기반의 적응DEF 루프로 입 력되고 확장된 훈련심볼로서 사용된다. 또한 전체적인 처리를 위하여 ML (maximum likelihood) 추정기를 사용하는 블록연산 대신에 낮은 복잡도의 적응 LMS연산이 사용된다. 시뮬레이션 결과에서 제안된 등화기는 반복귀환이 증가함에 따라 성능이 향상되고 시변 페이딩에 보다 강한 성능을보여준다.