DOI QR코드

DOI QR Code

Confidence Intervals for a tow Binomial Proportion

낮은 이항 비율에 대한 신뢰구간

  • Ryu Jae-Bok (Dvivision of Life Science.Genetic Engineering.Statistics, Cheongju University) ;
  • Lee Seung-Joo (Dvivision of Life Science.Genetic Engineering.Statistics, Cheongju University)
  • 류제복 (청주대학교 생명.유전.통계학부) ;
  • 이승주 (청주대학교 생명.유전.통계학부)
  • Published : 2006.07.01

Abstract

e discuss proper confidence intervals for interval estimation of a low binomial proportion. A large sample surveys are practically executed to find rates of rare diseases, specified industrial disaster, and parasitic infection. Under the conditions of 0 < p ${\leq}$ 0.1 and large n, we compared 6 confidence intervals with mean coverage probability, root mean square error and mean expected widths to search a good one for interval estimation of population proportion p. As a result of comparisons, Mid-p confidence interval is best and AC, score and Jeffreys confidence intervals are next.

본 연구에서는 낮은 이항비율에 관한 구간추정을 위해서 어떤 신뢰구간이 바람직한지를 살펴보았다. 실제 적으로 희귀질병, 특정 산업재해율, 그리 고 기생충에 관한 실태조사를 위해서 대규모 표본조사가 실시된다. 표본 규모가 크고, 0 < p ${\leq}$ 0.1인 상황에서 모비율 p의 추정에 바람직한 신뢰구간을 살펴보았다. 위의 조건에서 6가지의 신뢰구간들에 대해 평균포함확률과 평균제곱오차의 제곱근, 그리고 평균기대폭을 사용한 결과 Mid-p 신뢰 구간이 가장 바람직하고 다음으로 AC, score와 Jeffrey 신뢰 구간들이 적절한 것으로 밝혀졌다.

Keywords

References

  1. 이승천 (2005). 이항비율의 가중 Polya Posterior 구간추정, <응용통계연구>, 18, 607-615 https://doi.org/10.5351/KJAS.2005.18.3.607
  2. Agresti, A. and Coull, B. A. (1998). Approximate is better than 'Exact' for interval estimation of Binomial proportions, The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
  3. Berry, G. and Armitage, P. (1995). Mid-P confidence intervals: a brief review, The Statistician, 44, 417-423 https://doi.org/10.2307/2348891
  4. Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 https://doi.org/10.2307/2287116
  5. Brown, L. D., Cai, T. T., and DasGupta, A. (2001). Interval estimation for a binomial proportion (with discussion), Statistical Science, 16, 101-133
  6. Brown, L. D., Cai, T. T., and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30, 160-201 https://doi.org/10.1214/aos/1015362189
  7. Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial, Biometrika, 26, 403-413
  8. Kott, P. S., Anderson, P. G., and Nerman, O. (2001). Two-sided coverage intervals for small proportions based on survey data, Federal Committee on Statistical Methodology Research Conference, 2001
  9. Leemis, L. M. and Trivedi, K. S. (1996). A comparison of approximate interval estimators for the bernoulli parameters, The American Statistician, 50, 63-68 https://doi.org/10.2307/2685046
  10. Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: comparison of seven methods, Statistics in Medicine, 17, 857-872 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
  11. Reiczigel, J. (2003). Confidence intervals for a binomial parameter: some new considerations, Statistics in Medicine, 22, 611-621 https://doi.org/10.1002/sim.1320
  12. Santner, T. J. (1998). Teaching large-sample Binomial confidence intervals, Teaching Statistics, 20, 20-23 https://doi.org/10.1111/j.1467-9639.1998.tb00753.x
  13. Vollset, S. E. (1993). Confidence intervals for a binomial proportion, Statistics in Medicine, 12, 809-824 https://doi.org/10.1002/sim.4780120902
  14. Wilson, E, B. (1927). Probable inference, the law of succession, and statistical inference, Journal of the American Statistical Association, 22, 209-212 https://doi.org/10.2307/2276774

Cited by

  1. The Influence of Extreme Value in Binomial Confidence Interval vol.18, pp.5, 2011, https://doi.org/10.5351/CKSS.2011.18.5.615
  2. On Prediction Intervals for Binomial Data vol.26, pp.6, 2013, https://doi.org/10.5351/KJAS.2013.26.6.943
  3. Confidence Interval for Sensitive Binomial Attribute : Direct Question Method and Indirect Question Method vol.28, pp.1, 2015, https://doi.org/10.5351/KJAS.2015.28.1.075