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Abstract

The desirability function approach to multiple response optimization is a useful technique
for the analysis of experiments in which several responses are optimized simultaneously. But
the existing methods have some defects, and have to be modified to some extent. This pa-
per proposes a new method to combine the individual desirabilities.
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1. Introduction

Response surface methodology (RSM) consists of a group of techniques used in the empiri-
cal study of the relationship between the response and a number of input variables. Consequently,
the experimenter attempts to find the optimal setting for the input variables that optimize the
response. Most of the work in RSM has been focused on the case where there is only one
response of interest. But in most experiments there are several responses of interest. The de-
sirability function approach to multiple response optimization is a useful technique for the
analysis of experiments in which several responses have to be optimized simultaneously.
Originally developed by Harrington (1965) and later modified by Derringer and Suich
(1980), the desirability function approach is one of the most frequently used multiresponse
optimization techniques in practice (Derringer (1994)).

This paper proposes a new method to combine the individual desirabilities. In Section 2,

TCorresponding Author
* This work was partially supported by a grant from the korean Sanhak Foundation in 2006.




The Asian Journal on Quality / Vol. 7, No. 3 47

there will be a review of literature about desirability function. In Section 3, we will in-
troduce the modification of overall desirability function. And in Section 4, there will be ex-
amples about the proposed method.

2. Desirability Function

In many experimental situations, it is quite common for several responses, rather than a
single response, to be measured for each setting of a group of input variables. Multiresponse
optimization is the most visible and important aspect of multiresponse analysis. The object is
to determine conditions on the input variables z,, x,,-,z; that lead to optimal, or nearly op-
timal, values of the response variables, y;, s =, ¥, There are several approaches to multi-
response optimization. Desirability function method is the one approach of those.

Derringer and Suich (1980) introduced the concept of desirability, whereby each response
function is transformed into a desirability function. The choice of these transformations is
subjective as it is governed by the experimenter’s assessment of the importance of each
response. A measure of the overall desirability of the response is obtained by using the geo-
metric mean of the individual desirability functions. The geometric mean is then maximized
over the region of interest.

The desirability function involves transformation of each estimated response variable yAl to
a desirability value d;,, where 0<d, <1 The value of d; increases as the “desirability” of
the corresponding response increases.

Consider the case when the characteristic of interest is largerthe-better. Let d;(z) be the ¢
th individual desirability function, which is usually defined by

0 ~
~ yi(x) =y,
yz(x) —yi' r -~ t *
di(z) = [W] v <ylz) <y
B u@) =4,

where Vi is the minimum allowable value of y,(x), y; is the satisfactory value of y,(z)
fori=1, 2,--- ,m, and ¥ is an arbitrary positive constant.
If the characteristic is smallerthe-better, the individual desirability function d,(x) is usually
defined by
v yi(z) <y,
di(z) = [—y;yi(—z-)-]' v <wle) <y
0 ] yilz) 2 y;
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where y. is the satisfactory value of y,(z), y; is the maximum allowable value of vi(z)

for i=1, 2, ---,m
If the characteristic is nominal-is-best, the individual desirability function is defined by

?/i(f’?) Y, Yy < y:(:c) <t
(== ‘
i y," R
d(x) = [Z;,(:L‘)—y:]c t; <ylz) <y,
t; _y: ~ ~ *
0 yi(a) <y, or y(x)y,

where ¢, is the target value for the i th response, y. is the minimum allowable value of
v(z), y, is the maximum allowable value of y(z), and s and c are arbitrary positive

constants.
The individual desirabilities are then combined using the geometric mean,

D=(d, xd,x - xd, )™ @2.1)

This single value of D gives the overall assessment of the desirability of the combined
response levels. Clearly, the range of D will fall in the interval [0,1] and D will increase as
the balance of the properties becomes more favorable. D also has the property that if any
d, =0 (that is, if one of the response variables is unacceptable) then D=0 (that is, the over-
all product is unacceptable). It is for these reasons that the geometric mean, rather than some
other function of the d;s such as the arithmetic mean, was used.

3. Modification of Overall Desirability Function

3.1 Existing Methods

The conditions of the overall desirability function D is,

Condition 1> If any d; equals to 0 then Dequals to 0, if all d; equals to 1 the D equals to
1 and D is non-decreasing function.

Condition 2> D must increase as the balance of the properties becomes more favorable. For
instance, D must be larger when d;s are (0.5, 0.5) than (0.4, 0.6)

The reason why the geometric mean was selected previously is that it is the most simple
function satisfying these conditions. The geometric mean is described in (2.1).
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The most important merit of geometric mean is that it's the most simple function satisfy-
ing that conditions using all d;s in calculation. But the geometric mean has some demerits.
Firstly, since d;s are quadratic functions, D is a function of order 2*m. Therefore, if m is
too large, there will be a problem in optimization. Secondly, the degree of satisfying the
condition 2 is weaker than the “Maximin” approach (Kim and Lin, 2006) or the method
which will be produced in this literature. And, the maximin approach is a substitute for the
geometric mean. This method is described as,

D=maxmin{d, (5(z)), d,,(s(z))}] G.1

The merits of this method are that it strongly satisfies the condition 2 and that the ex-
istence of dependency among responses does not affect this method and that it is intuitive
and understandable. But this method has a serious demerit. It is that this method excludes
any other d;s except the smallest d;. For example, it cannot distinguish that d;s are
(0.3,0.4,0.9) from that those are (0.3,0.3,0.3). And it prefers that d;s are (0.3, 0.3, 0.3) rath-
er than that d;s are (0.29,0.9,1).

3.2 Proposed Method ; Harmonic Average Method

If we elaborate the condition 2, we can see that it's characteristic is similar to the method
which Taguchi proposed in case of the large-the-better.

SN; = 10log %2_]—12— (3.2)

In the formula to compute the SN ratio in case of the largethe-better, if each value is
large and if the dispersion is small, the SN ratio is large. So we firstly define D as,

=— 1010g( Z

5 (3.3)

If the d; is zero, we regard the 1/d, as an infinite value.
But multiplying by 10, taking log and dividing by m do not affect the optimization. So
we simply define D as,

D=(§j)‘1 (3.4)

T

And if all d;s are 1, we want that D is 1 also. So we multiply the formula by m.

D=m(§mj%)_1 (-5
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And since the square of d; complicates the computation, we remove the square term. So

we ﬁnally define D as,
1

After converting the formula like this, it seems like a harmonic average form and this sat-
isfies the condition 2 more strongly than the geometric mean. And this will be a good
measure because this overcomes the demerit of the “Maximin” approach which doesn’t use
all d;s. In other words, this method will have a middle property between the geometric

mean and the "Maximin" approach.

3.3 Weighted Optimization

q; . .
It’'s a good idea to substitute DZD(_I—U—.) for D=D(d,) Because, in a dependent variable

which has a large weight, this method makes the d, smaller which was small originally.
And finally, this point will not be selected as an optimal point. In other words, the speed
that the chance of being selected is decreasing is much faster than the speed that d; is

decreasing.

3.3.1 Weighted Geometric Mean

In case of the geometric mean, if we substitute — for d; we can obtain this form,

oo d
d2 m )l/mz(dldz"'dm)l/m (3.7)

D= (ww, - w )l/m(
Wyt **

m

In fact, this form is exactly the same as the ordinary geometric mean.

3.3.2 Weighted Maximin Approach

d
In case of the maximin approach, if we substitute 1—;— for d; we can obtain this form,
d, dy d

D=max (w,)min[—,—=, - —] 3.9)
w, wy,  w

So this method has a property that it seriously depends on the dependent variable which
has a large weight.
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3.3.3 Weighted Harmonic Aaverage

. . d; . .
In case of the harmonic average, if we substitute E’— for d, we can obtain this form,

i

p=$lu (355 (3.9)

This method has a good form and it does not seem that it has a bad property. So this
method is the best among the three methods.

3.4 Graphical Approach for Response Optimization

In the optimized point, it is an important property in practice that the overall desirability
value decreases slowly as one independent variable varies a little when the other independent
variables are fixed. So, if a new method is proposed we must check that the method has
that property. But, it is difficult to check that property by using a theoretical method. So,
we will check it by using R graphics in Section 5. The conclusion is that our proposed
method, harmonic average method, has that property more than the existing methods in
many cases.

4. Example

4.1 Example. Colloidal gas Aphrons (CGA) Study

A real problem with multiple responses reported in the chemical engineering literature
(Jauregi er al., 1997) is employed to demonstrate the use of the existing multiresponse opti-
mization approaches. The same example will be used later to illustrate the proposed approach.
When surfactant solutions are mixed at high speeds, micro bubbles (10-100 pm in diameter)
are formed. It is postulated that these bubbles, calledcolloidal gas aphrons (CGAs), are com-
posed of a gaseous inner core surrounded by a thin soapy film. The properties of the CGAs
are measured by three different responses-stability(y;), volumetric ratio (y,), and temperature
(v5). The responses, y;, y,, and y; are largerthe-better(LTB), smallerthe-better(STB) and nom-
inal-the-best(NTB) type responses, respectively. The purpose of the experiment was to de-
termine the effects of concentration of surfactant (x,), concentration of salt (z,) and time of
stirring (x,) on the CGA properties.

The experiment was conducted in a central composite design with eight factorial points,
six axial points and a center point. The center point was replicated six times and the other
design points were replicated twice. The dataset is displayed in Table 1.
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In Table 2, the “Maximin” approach does not consider the experimental point which has a
small d; and the geometric mean put relative importance on a point which has one big d;.
But the proposed method has a middle property between those methods.

Let us introduce the graphics mentioned in Section 3.4. The other independent variables
are fixed on optimized points (if necessary, we can fix them to arbitrary points).
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0 034 0 4
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0.1 .
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Figure 1. Geometric mean. method

In this example, the harmonic average method has the best property among the three
methods since the overall desirability value decreases slowly as one independent variable
varies a little around the optimum.

Next, we want to see the effect of the case that one response variable has an increasing
weight.

We can see that d; is increasing so fast and d, is decreasing so fast as w, is increasing.
In other words, this method has a property that it seriously depends on the dependent varia-
ble which has a large weight.
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Table 1. The CGA study data "Kim and Lin, 2006

U 1 Z2 z3 Rep. % Yo Y3
-1 -1 -1 1 4.5 0.17 29
! -1 -1 -1 2 4.5 0.26 23
1 -1 -1 1 6.04 0.5 23
2 1 -1 -1 2 6.39 0.53 25.4
-1 1 -1 1 3.81 0.17 22
3 -1 1 -1 2 4.09 0.2 27
1 1 -1 1 5.67 0.44 25.5
4 1 1 -1 2 5.19 0.4 21
-1 -1 1 1 4.67 0.32 20
> -1 -1 1 2 4.22 0.32 41
1 -1 1 1 6.73 0.57 355
6 1 -1 1 2 6.57 0.57 18
-1 1 1 1 34 0.12 43
7 -1 1 1 2 4.32 0.28 20
1 1 1 1 5.72 0.46 19
8 1 1 1 2 5.09 0.5 34
-1 0 0 1 4.09 0.27 36
? -1 0 0 2 4.38 0.23 24
1 0 0 1 5.52 0.52 30
10 1 0 0 2 5.39 0.51 24
0 -1 0 1 5.92 0.61 32
i 0 -1 0 2 5.93 0.59 23.4
0 1 0 1 4.74 0.36 36
12 0 1 0 2 45 0.3 21
0 0 -1 1 5.01 0.36 27
13 0 0 -1 2 4.7 0.25 24
1 0 0 1 1 4.94 0.53 38
0 0 1 2 5.01 0.51 25
0 0 0 1 4.85 0.47 34
0 0 0 2 4.94 0.46 34
0 0 0 3 4,98 0.49 33
15 0 0 0 4 4.89 0.48 24
0 0 0 5 4.94 0.46 19
0 0 0 6 5.01 0.47 25

Notes) U is a design point number. x,, z, and xz, are coded values. Measurement units for y, 1, ¥,

are as follows: y,=log(seconds), y,=none(ratio), y,=°C. y,; is the response data of y; at the uth

design point, j=1,2,3; u=1,...,15.
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Table 2. Results

GM S.N. M.A. H.A.
D 0.5943461 0.317624 0.5098694 0.5724967
T -0.997241 -0.681172 -0.519439 -0.757084
T, -0.995765 -0.996792 -0.979151 -0.998316
T3 0.5349995 -0.984887 -0.996745 -0.993563
d, 0.409971 0.4732917 0.5098694 0.4533545
d, 0.512114 0.57629 0.5098848 0.6148699
dg 0.9999965 0.7124896 0.7104982 0.7101946
3;1 4.6398838 4.8931668 5.0394774 4.8134179
1;2 0.343943 0.311855 0.3450576 0.2925651
g;; 29.999947 25.687343 25.657473 25.652918

G.M. : geometric mean S.N. : Exp((SN ratio in largethe-better case)/10)
M.A. : Maximin approach H.A. : harmonic average
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T, T,
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Figure 2. Maximin approach method




The Asian Journal on Quality / Vol. 7, No. 3

55

0.55 0.56
0.50 0.54
0 0
0.45 0.52
0.40 7 T T T T 050 T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
T Ty
0.56
0.55
0
0.54
0.53 15 T T T T
-1.0 -0.5 0.0 0.5 1.0
T3

Figure 3. Harmonic average method

Table 3. Weighted maximin approach

w= (w,, wy, wy) 4 d, d,
(1,1,1) 0.509854 0.509858 0.7125
2,1,1) 0.629037 0.315754 0.701114
3.,1,1) 0.725201 0.241718 0.641173
4,1,1) 0.800103 0.200038 0.62057
(5,1,1) 0.821959 0.164393 0.631311
6,1,1) 0.827888 0.137985 0.647073
(7,1,1) 0.83454 0.119223 0.656665
4,1,1) 0.834729 0.10435 0.668515
©.1,1) 0.842223 0.093594 0.671277
(10,1,1) 0.845082 0.084534 0.676463
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Table 4. Weighted harmonic average

w= (w,, w, wy) d, d, d,
(1,1,1) 0.452393 0.614196 0.71275
(2,1,1) 0.527282 0.484541 0.708457
3.1 0.571917 0.412876 0.705379
“4,1,1) 0.605159 0.363452 0.700174
(5,1,1) 0.632867 0.327278 0.69477
6,1,1) 0.731915 0.241327 0.636597
(7,1,1) 0.753237 0.227545 0.632747
8,1,1) 0.772724 0.215886 0.628075
9,1,1) 0.788766 0.206035 0.624197
(10,1,1) 0.804721 0.198087 0.618707

In case of the weighted maximin approach, (d,, d,) is (0.8,0.2) when w, is just 4, but in
case of the weighted harmonic average, (d,, d,) is (0.8,0.2) when w, is just 10. That is,
weighted harmonic average method doesn’t seriously depend on the response variable which
has the largest weight differently from the weighted maximin approach.

S. Concluding Remarks

This paper proposed the harmonic average method to combine the individual desirabilities.
When we want to compute the overall desirability D, if we use the harmonic average meth-
od then it satisfies the condition 2 more strongly than the geometric mean method, and it
will be a good measure because it overcomes the demerit of the maximin approach which
doesn't use all d;s. Especially, if the response variables have weights depending on im-
portance, using the harmonic average method is desirable.

Since we meet multiple response optimization problems frequently in practice, the har-
monic average method which was proposed in this paper can be usefully employed. Such
optimization method also can be implemented well for project activities in Six Sigma
management.
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