The Study of Criteria Weight for Taiwan National Quality Award by Fuzzy Hierarchical Analysis

  • Li, Shao-Chang (Department of Business Administration Kao Yuan University) ;
  • Fu, Hsin-Pin (Institute of Marketing/Distribution Management National Kaohsiung First University of Science and Technology)
  • Published : 2006.08.30

Abstract

In this paper, fuzzy hierarchical analysis (FHA) is used to explore the process by which the criteria weights of the Taiwan National Quality Award (TNQA) are assigned by TNQA committee members. Each member is allowed to employ fuzzy scales in place of exact scales. Each pairwise comparison of criteria is made through a questionnaire from each TNQA committee member. The membership function of trapezoidal fuzzy numbers is introduced to specify TNQA committee members' intentions. After FHA, the reasonable range of each criterion weight of TNQA is determined. The current criteria weights of TNQA are properly verified.

Keywords

References

  1. Akash, B. A., Mamlook, R., and Mohsen, M. S.(1999), 'Multi-criteria selection of electric power plants using analytical hierarchy process,' Electric Power Systems Research, Vol. 52, No. 1, 29-35 https://doi.org/10.1016/S0378-7796(99)00004-8
  2. Bonder, C. G. E., de Grann, J. G., Lootsma, F. A.(1989), 'Multicriteria decision analysis with fuzzy pairwise comparison,' Fuzzy Sets and Systems, Vol. 29, pp. 133-143 https://doi.org/10.1016/0165-0114(89)90187-5
  3. Buckley, J. J.(1984), 'Fuzzy hierarchical analysis,' Fuzzy Sets and Systems, Vol. 17, pp. 233-247 https://doi.org/10.1016/0165-0114(85)90090-9
  4. Buckley, J. J.(1990), 'Fuzzy eigenvalues and input-output analysis,' Fuzzy Sets and Systems, Vol. 34, pp. 187-195 https://doi.org/10.1016/0165-0114(90)90158-3
  5. Buckley, J. J.(1985), 'Ranking Alternatives using fuzzy numbers,' Fuzzy Sets and Systems, Vol. 15, No. 1, pp. 21-31 https://doi.org/10.1016/0165-0114(85)90013-2
  6. Buckley, J. J.(1992), 'Solving fuzzy equations,' Fuzzy Sets and Systems, Vol. 50, pp. 1-14 https://doi.org/10.1016/0165-0114(92)90199-E
  7. Buckley, J. J. and Csutora, R.(2001), 'Fuzzy hierarchical analysis: the Lambda-Max method,' Fuzzy Sets and Systems, Vol. 120, pp. 181-195 https://doi.org/10.1016/S0165-0114(99)00155-4
  8. Buckley, J. J. and Uppuluri, V. R. R.(1984), 'Fuzzy hierarchical analysis,' in V. T. Covello, L.B. Lave, A. Moghissi, V.R.R. Uppuluri (Eds.), Uncertainty and Risk Assessment, Risk Management and Decision Making, Plenum, New York, pp. 389-401
  9. Chen, S. M.(1996), 'Evaluating weapon systems using fuzzy arithmetic operations,' Fuzzy Sets and Systems, Vol. 77, pp. 265-276 https://doi.org/10.1016/0165-0114(95)00096-8
  10. Cheng, C. H. and Mon, D. L.(1994), 'Evaluating weapon system by AHP based on fuzzy scale,' Fuzzy Sets and Systems, Vol. 63, pp. 1-10 https://doi.org/10.1016/0165-0114(94)90140-6
  11. Corporate Synergy Development Center (CSD), 2001. 2001 Taiwan National Quality Award Criteria Handbook. Taiwan, R.O.C
  12. Hauser, D. and Tadikamalla, P.(1996), 'The analytic hierarchy process in an uncertain environment: a simulation Approach,' European Journal of Operational Research, Vol. 91, No. 1, pp. 27-37 https://doi.org/10.1016/0377-2217(95)00002-X
  13. Jung, C. H. and Lee, D. H.(1991), 'A fuzzy scale for measuring weight criteria in hierarchy structure,' Proceedings of the International Fuzzy Engineering Symposium, Yokohama, Japan, pp. 415-421
  14. Labib, A. W., O'Connor, R. F. and Williams, G. B.(1998), 'Effective maintenance system using the analytical hierarchy process,' Integrated Manufacturing Systems, Vol. 9, No. 2, pp. 87-98 https://doi.org/10.1108/09576069810202005
  15. Levary, R. R. and Ke, W.(1998), 'A simulation approach for handling uncertainty in the analytic hierarchy process,' European Journal of Operational Research, Vol. 106, No. 1, pp. 116-122 https://doi.org/10.1016/S0377-2217(97)00134-3
  16. Mohanty, B. K. and Singh, N.(1994), 'Fuzzy relational equations in analytical hierarchy process,' Fuzzy Sets and Systems, Vol. 63, pp. 11-19 https://doi.org/10.1016/0165-0114(94)90141-4
  17. National Institute of Standards and Technology (NIST) (2001), Baldrige National Quality Program: Criteria for Performance Excellence, Gaithersburg, MD
  18. Ruoing, X. and Xiaoyan, Z.(1992), 'Extensions of the analytic hierarchy process in fuzzy environment,' Fuzzy Sets and Systems, Vol. 52, pp. 251-257 https://doi.org/10.1016/0165-0114(92)90236-W
  19. Saaty, T. L.(1980), The Analytical Hierarchy Process, McGraw-Hili, New York
  20. Salo, A. A.(1996), 'On fuzzy ratio comparisons in hierarchical decision models,' Fuzzy Sets and Systems, Vol. 84, pp. 21-32 https://doi.org/10.1016/0165-0114(95)00303-7
  21. VanLaarhoven, P. J. M. and Pedrycz, W.(1983), 'A fuzzy extension of Saaty's priority theorey,' Fuzzy Sets and Systems, Vol. 11, pp. 229-241 https://doi.org/10.1016/S0165-0114(83)80083-9