Dual Effect of $H_2O_2$ on the Regulation of Cholecystokinin-induced Amylase Release in Rat Pancreatic Acinar Cells

  • An, Jeong-Mi (Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Rhie, Jin-Hak (Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Seo, Jeong-Taeg (Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry)
  • Published : 2006.12.31

Abstract

[ $H_2O_2$ ], a member of reactive oxygen species (ROS), is known to be involved in the mediation of physiological functions in a variety of cell types. However, little has been known about the physiological role of $H_2O_2$ in exocrine cells. Therefore, in the present study, the effect of $H_2O_2$ on cholecystokinin (CCK)-evoked $Ca^{2+}$ mobilization and amylase release was investigated in rat pancreatic acinar cells. Stimulation of the acinar cells with sulfated octapeptide form of CCK (CCK-8S) induced biphasic increase in amylase release. Addition of $30\;{\mu}M\;H_2O_2$ enhanced amylase release caused by 10 pM CCK-8S, but inhibited the amylase release induced by CCK-8S at concentrations higher than 100 pM. An ROS scavenger, $10\;{\mu}M$ Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, increased amylase release caused by CCK-8S at concentrations higher than 100 pM, although lower concentrations of CCK-8S-induced amylase release was not affected. To examine whether the effect of $H_2O_2$ on CCK-8S-induced amylase release was exerted via modulation of intracellular $Ca^{2+}$ signaling, we measured the changes in intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ in fura-2 loaded acinar cells. Although $30\;{\mu}M\;H_2O_2$ did not induce any increase in $[Ca^{2+}]_i$ by itself, it increased the frequency and amplitude of $[Ca^{2+}]_i$ oscillations caused by 10 pM CCK-8S. However, $30\;{\mu}M\;H_2O_2$ had little effect on 1 nM CCK-8S-induced increase in $[Ca^{2+}]_i$. ROS scavenger, 1 mM N-acetylcysteine, did not affect $[Ca^{2+}]_i$ changes induced by 10 pM or 1 nM CCK-8S. Therefore, it was concluded that $30\;{\mu}M\;H_2O_2$ enhanced low concentration of CCK-8S-induced amylase release probably by increasing $[Ca^{2+}]_i$ oscillations while it inhibited high concentration of CCK-8S-induced amylase release.

Keywords

References

  1. Akaishi, T., Nakazawa, K., Sato, K., Saito, H., Ohno, Y., Ito, Y.: Hydrogen peroxide modulates whole cell $Ca^{2+}$ currents through L-type channels in cultured rat dentate granule cells. Neurosci. Lett. 356:25-28, 2004 https://doi.org/10.1016/j.neulet.2003.11.012
  2. Bae, Y.S., Kang, S.W., Seo, M.S., Baines, I.C., Tekle, E., Chock, P.B., Rhee, S.G.: Epidermal growth factor (EGF)- induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272:217-221, 1997 https://doi.org/10.1074/jbc.272.1.217
  3. Bae, Y.S., Sung, J.Y., Kim, O.S., Kim, Y.J., Hur, K.C., Kazlauskas, A, Rhee, S.G.: Platelet-derived growth factorinduced $H_{2}O_{2}$ production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275:10527- 10531, 2000 https://doi.org/10.1074/jbc.275.14.10527
  4. Bernfeld, P.: Amylase alpha and beta. Meth. Enzymol. 5:139- 148, 1955
  5. Berridge, M.J.: The AM and FM of calcium signalling. Nature. 386:759-760, 1997 https://doi.org/10.1038/386759a0
  6. Berridge, M.J., Bootman, M.D., Lipp, P.: Calcium--a life and death signal. Nature. 395:645-648, 1998 https://doi.org/10.1038/27094
  7. Berridge, M.J., Lipp, P., Bootman, M.D.: The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1:11-21, 2000
  8. Cancela, J.M., Gerasimenko, O.V., Gerasimenko, J.V., Tepikin, A.V., Petersen, O.H.: Two different but converging messenger pathways to intracellular $Ca^{2+}$ release: the roles of nicotinic acid adenine dinucleotide phosphate, cyclic ADP-ribose and inositol trisphosphate. EMBO J. 19:2549-2557, 2000 https://doi.org/10.1093/emboj/19.11.2549
  9. Droge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82:47-95, 2002 https://doi.org/10.1152/physrev.00018.2001
  10. Favero, T.G., Zable, A.C., Abramson, J.J.: Hydrogen peroxide stimulates the $Ca^{2+}$ release channel from skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270:25557-25563, 1995 https://doi.org/10.1074/jbc.270.43.25557
  11. Gamaley, I.A., Klyubin, I.V.: Roles of reactive oxygen species: signaling and regulation of cellular function. Int. Rev. Cytol. 188:203-255, 1999 https://doi.org/10.1016/S0074-7696(08)61568-5
  12. Granados, M.P., Salido, G.M., Gonzalez, A., Pariente, J.A.: Dose-dependent effect of hydrogen peroxide on calcium mobilization in mouse pancreatic acinar cells. Biochem. Cell Biol. 84:39-48, 2006 https://doi.org/10.1139/O05-150
  13. Granados, M.P., Salido, G.M., Pariente, J.A., Gonzalez, A.: Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion. 3(5):285- 296, 2004 https://doi.org/10.1016/j.mito.2004.02.003
  14. Grynkiewicz, G., Poenie, M., Tsien, R.Y.: A new generation of $Ca^{2+}$ indicators with greatly improved fluorescence properties. J. Biol.Chem. 260: 3440-3450, 1985
  15. Hong, J.H., Moon, S.J., Byun, H.M., Kim, M.S., Jo, H., Bae, Y.S., Lee, S.I., Bootman, M.D., Roderick, H.L., Shin, D.M., Seo, J.T.: Critical role of $PLC\gamma1$ in the generation of $H_{2}O_{2}$- evoked [$Ca^{2+}$ ]$_{i}$ oscillations in cultured rat cortical astrocytes. J. Biol. Chem. 281:13057-13067, 2006 https://doi.org/10.1074/jbc.M601726200
  16. Hu, Q., Zheng, G., Zweier, J.L., Deshpande, S., Irani, K., Ziegelstein, R.C.: NADPH oxidase activation increases the sensitivity of intracellular $Ca^{2+}$ stores to inositol 1,4,5-trisphosphate in human endothelial cells. J. Biol. Chem. 275:15749-15757, 2000 https://doi.org/10.1074/jbc.M000381200
  17. Hu, Q., Yu, Z.X., Ferrans, V.J., Takeda, K., Irani, K., Ziegelstein, R.C.: Critical role of NADPH oxidase-derived reactive oxygen species in generating $Ca^{2+}$ oscillations in human aortic endothelial cells stimulated by histamine. J. Biol. Chem. 277:32546-32551, 2002 https://doi.org/10.1074/jbc.M201550200
  18. Matozaki, T., Goke, B., Tsunoda, Y., Rodriquez, M., Martinez, J., Williams, J.A.: Two functionally distinct cholecystokinin receptors show different modes of actions on $Ca^{2+}$ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. J. Biol. Chem. 265:6247-6254, 1990
  19. Ohba, M., Shibanuma, M., Kuroki, T., Nose, K.: Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126:1079-1088, 1994 https://doi.org/10.1083/jcb.126.4.1079
  20. Pignatelli, P., Pulcinelli, F.M., Lenti, L., Gazzaniga, P.P., Violi, F.: Hydrogen peroxide is involved in collagen-induced platelet activation. Blood. 91:484-490, 1998
  21. Redondo, P.C., Salido, G.M., Rosado, J.A., Pariente, J.A.: Effect of hydrogen peroxide on $Ca^{2+}$ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. Biochem. Pharmacol. 67:491-502, 2004 https://doi.org/10.1016/j.bcp.2003.09.031
  22. Rosado, J.A., Gonzalez, A., Salido, G.M., Pariente, J.A.: Effects of reactive oxygen species on actin filament polymerisation and amylase secretion in mouse pancreatic acinar cells. Cell Signal. 14:547-556, 2002 https://doi.org/10.1016/S0898-6568(01)00273-X
  23. Servitja, J.M., Masgrau, R., Pardo, R., Sarri, E., Picatoste, F.: Effects of oxidative stress on phospholipid signaling in rat cultured astrocytes and brain slices. J. Neurochem. 75:788- 794, 2000 https://doi.org/10.1046/j.1471-4159.2000.0750788.x
  24. Sobey, C.G., Heistad, D.D., Faraci, F.M.: Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate $K^{+}$ channels. Stroke. 28:2290-2294, 1997 https://doi.org/10.1161/01.STR.28.11.2290
  25. Stark, H.A., Sharp, C.M., Sutliff, V.E., Martinez, J., Jensen, R.T., Gardner, J.D.: CCK-JMV-180: a peptide that distinguishes high-affinity cholecystokinin receptors from lowaffinity cholecystokinin receptors. Biochim. Biophys. Acta. 1010:145-150, 1989 https://doi.org/10.1016/0167-4889(89)90154-7
  26. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K., Finkel, T.: Requirement for generation of $H_{2}O_{2}$ for platelet-derived growth factor signal transduction. Science. 270:296-299, 1995 https://doi.org/10.1126/science.270.5234.296
  27. Toescu, E.C., Lawrie, A.M., Gallacher, D.V., Petersen, O.H. The pattern of agonist-evoked cytosolic $Ca^{2+}$ oscillations depends on the resting intracellular $Ca^{2+}$ concentration. J. Biol. Chem. 268:18654-18658, 1993
  28. Tournier, C., Thomas, G., Pierre, J., Jacquemin, C., Pierre, M., Saunier, B.: Mediation by arachidonic acid metabolites of the $H_{2}O_{2}$-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun $NH_{2}$-terminal kinase). Eur. J. Biochem. 244:587-595, 1997 https://doi.org/10.1111/j.1432-1033.1997.00587.x
  29. Varela, D., Simon, F., Riveros, A., Jorgensen, F., Stutzin, A.: NAD(P)H oxidase-derived $H_{2}O_{2}$ signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279:13301-13304, 2004 https://doi.org/10.1074/jbc.C400020200
  30. Wang, X.T., McCullough, K.D., Wang, X.J., Carpenter, G., Holbrook, N.J.: Oxidative stress-induced phospholipase Cgamma 1 activation enhances cell survival. J. Biol. Chem. 276:28364-28371, 2001 https://doi.org/10.1074/jbc.M102693200
  31. Wehage, E., Eisfeld, J., Heiner, I., Jungling, E., Zitt, C., Luckhoff, A.: Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277:23150-23156, 2002 https://doi.org/10.1074/jbc.M112096200
  32. Williams, J.A.: Intracellular signaling mechanisms activated by cholecystokinin- regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu. Rev. Physiol. 63:77-97, 2001 https://doi.org/10.1146/annurev.physiol.63.1.77
  33. Williams, J.A., Blevins, G.T. Jr.: Cholecystokinin and regulation of pancreatic acinar cell function. Physiol. Rev. 73: 701-723, 1993 https://doi.org/10.1152/physrev.1993.73.4.701