Effects of Dietary ${\beta}-1,3$ Glucan on Growth and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus

치어기 넙치 사료내 ${\beta}-1,3$ 글루칸의 첨가가 성장 및 비특이적 면역반응에 미치는 영향

  • Kim, Young-Chul (Aquafeed Research Center, National Fisheries Research & Development Institute) ;
  • Kim, Kang-Woong (Aquafeed Research Center, National Fisheries Research & Development Institute) ;
  • Lee, Seung-Hyung (Dept. of Aquaculture/Feeds & Foods Nutrition Research Center/Pukyong National University) ;
  • Park, Gun-Jun (WooSung Co. Ltd,) ;
  • Okorie, Okorie Eme (Dept. of Aquaculture/Feeds & Foods Nutrition Research Center/Pukyong National University) ;
  • Kang, Yong-Jin (Aquafeed Research Center, National Fisheries Research & Development Institute) ;
  • Bai, Sung-Chul C. (Dept. of Aquaculture/Feeds & Foods Nutrition Research Center/Pukyong National University)
  • 김영철 (국립수산과학원 양식사료연구센터) ;
  • 김강웅 (국립수산과학원 양식사료연구센터) ;
  • 이승형 (부경대학교 양식학과/사료영양연구소) ;
  • 박건준 (우성사료) ;
  • ;
  • 강용진 (국립수산과학원 양식사료연구센터) ;
  • 배승철 (부경대학교 양식학과/사료영양연구소)
  • Published : 2006.11.25

Abstract

This study was conducted to investigate the effects of dietary supplementation of ${\beta}-1,3$ glucan on growth and immune responses in juvenile olive flounder, Paralichthys olivaceus fed the white fish meal based diets for 6 weeks. Five experimental diets supplemented with ${\beta}-1,3$ glucan at 0, 0.01, 0.025, 0.05, 0.1 % (Control, $G_{0.01},\;G_{0.025},\;G_{0.05}\;and\;G_{0.1}$, respectively) of diet on a dry-matter basis. Five experimental diets were formulated to be isonitrogenous and isocaloric to contain 50.0% crude protein and 16.7 kJ available energy $g^{-1}$. Fish averaging $3.2{\pm}0.1\;g\;(mean{\pm}SD)$ were randomly distributed in each aquarium as triplicate groups of 15 fish. Weight gain (WG, %), specific growth rate (SGR, %), and feed efficiency (FE, %) of fish fed $G_{0.1}$ diet were found significantly higher than those of fish fed Control, $G_{0.01},\;G_{0.025}\;and\;G_{0.05}$ diets (P<0.05). However, there was no significant difference among the fish fed control, $G_{0.01},\;G_{0.025}$. Chemiluminescent responses (CL) of fish fed $G_{0.1}$ diet were significantly higher than those of fish fed the other diets. Serum lysozyme activities of fish fed $G_{0.05}$ and $G_{0.1}$ diets were higher than those of fish fed control, $G_{0.025}$ and $G_{0.05}$ diets. Fish fed $G_{0.1}$ diet showed a significantly lower cumulative mortality than did fish fed control diet throughout the challenge test (P<0.05). These results suggested that based on growth rate, feed efficiency, non-specific immunity and protection against microbial infections the optimum dietary ${\beta}-1,3$ gulcan could be greater than 0.05% but less than 1.0% in juvenile olive flounder, Paralichthys oilvaceus.

본 실험은 치어기 넙치에 잇어서 ${\beta}-1,3$ 글루칸을 사료내 첨가시 성장, 비특이적 면역반응 및 질병저항성에 미치는 영향을 조사하기 위하여 사료내 ${\beta}-1,3$ 글루칸을 수준별 첨가하여 실시였다. 실험어는 평균무게 3.2 g인 넙치 치어를 사용하였으며, 기초사료에 ${\beta}-1,3$ 글루칸을 대조구, ${\beta}-1,3$ 글루칸 0.01, 0.025%, 0.05% 및 0.1%를 각각 첨가하여 총 5개 실험구로 3반복배치하여 6주간 실시하였다. 총 6주간의 성장 실험결과, 면역증강물질인 ${\beta}-1,3$ 글루칸의 첨가에 따르는 사료효율과 단백질전환효율에 있어서 ${\beta}-1,3$ 글루칸 0.1%를 공급한 사료구가 대조구와 다른처리구에 비하여 유의하게 높은 값을 나타냈다(P<0.05). 증체율과 일간성장율에 있어서는 ${\beta}-1,3$ 글루칸 0.1%를 공급한 사료구가 대조구, ${\beta}-1,3$ 글루칸 0.01%, 0.025%를 첨가한 구보다 유의하게 높은 값을 나타내었지만 ${\beta}-1,3$ 글루칸 0.05%구와는 유의한 차이가 없었다. 비만도에 있어서는 ${\beta}-1,3$ 글루칸 0.05%와 0.1%를 첨가한 구가 대조구와 첨가구보다는 유의적으로 높았다. 헤마토크리트치는 ${\beta}-1,3$ 글루칸 0.05%와 0.1%첨가한 실험구가 대조구와 ${\beta}-1,3$ 글루칸을 0.01%와 0.025%를 첨가한 실험구에 비하여 유의하게 높은 값을 나타내었다(P<0.05). 혈청내 GOT에 있어서 ${\beta}-1,3$ 글루칸 0.05%와 0.1%를 첨가한 실험구가 대조구, ${\beta}-1,3$ 글루칸 0.01%와 0.025%를 첨가한 실험구보다 유의하게 낮은 값을 나타내었다(P<0.05). 비특이적 면역반응 결과에 있어서는 ${\beta}-1,3$ 글루칸을 0.05%와 0.1%를 첨가한 실험구가 혈청의 lysozyme 활성 및 두신 phagocyte의 chemiluminescent(CL) 반응에서 대조구, ${\beta}-1,3$ 글루칸 0.01%와 0.025%를 첨가한 실험구보다 유의하게 높은 값을 나타내었으나, 보체대체활성의 경로에 있어서는 전실험구간의 유의한 차이를 보이지 않았다. 공격 실험 결과에서는 ${\beta}-1,3$ 글루칸을 첨가한 실험구가 대조구에 비하여 초기폐사율이 낮음을 확인할수 있었으며, 상기 결과를 토대로, 넙치 치어의 경우 ${\beta}-1,3$ 글루칸을 0.05% 이상 0.1% 미만을 사료에 첨가하는 것이 성장, 사료효율 증진, 항산화능 및 질병저항성에 가장 좋은 효과를 나타낼 수 있을 것을 사료된다.

Keywords

References

  1. AOAC, 1995. Official Methods of Analysis, 16th Ed., Association of Official Analytical Chemists. Arlington, Virginia, USA
  2. Brown, B. A. 1980. Routine hematology procedures. In: Hematology Principles and Procedures. Lea and Febiger, Philadelphia, pp. 71-112
  3. Chen, D. and A. J. Ainsworth. 1992. Glucan administration potentiates immune defense mechanism of channel catfish, Ictalurus punatatus Rafinesque. J. Fish Dis., 15, 295-304 https://doi.org/10.1111/j.1365-2761.1992.tb00667.x
  4. Donaldson, E. M., U. H. M. Fagerlund, D. A. Higgs and J. R. McBride. 1979. Hormonal enhancement of growth in fish. (in) W. S. Hoar, D. J. Randall and J. R. Brett (eds), Fish Physiology, Vol. . Academic Press, New York, NY, pp. 455-597
  5. Engstad, R. E., B. Robertson and E. Frivold. 1992. Yeast glucan induce increase in activity of lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish Shellfish Immunol., 2, 287-297 https://doi.org/10.1016/S1050-4648(06)80033-1
  6. Fletcher, G., 1973. The acute toxicity of a yellow phosphorus contaminated diet to brook trout Salvelinus fontinalis. Bull. Environ. Contam. Toxicol., 10, 123-128 https://doi.org/10.1007/BF01685885
  7. Jorgensen, J. B., H. Lunde and B. Robertsen. 1993a. Peritoneal and head kidney cell response to intraperitoneally injected yeast glucan in Atlantic salmon, Salmo salar L. J. Fish Dis., 16, 313-325 https://doi.org/10.1111/j.1365-2761.1993.tb00865.x
  8. Jorgensen, J. B., G. J. E. Sharp, C. J. Secombes and B. Robertsen. 1993b. Effect of a yeast-cell wall glucan on the bactericidal activity of rainbow trout macrophages. Fish Shellfish Immunol., 3, 267-277 https://doi.org/10.1006/fsim.1993.1026
  9. Kajita, Y., M. Sakai, M. Kobayashi and H. Kawaushi. 1992. Enhancement of non-specific cytotoxic activity of leucocytes in rainbow trout Oncorhynchus mykiss injected with growth hormone. Fish Shellfish Immunol., 2, 155-157 https://doi.org/10.1016/S1050-4648(05)80044-0
  10. Kawakami, H., M. Hiratsuka and S. Dosako. 1998. Effects of ironsaturated lactoferrin on iron absorption. Agri. Biol. Chem., 52, 903.908
  11. Kim, K. H., Y. J. Hwang and S. C. Bai. 1998. Enhancement of chemiluminescent response of phagocytic cells from juvenile Rockfish, Sebastes schlegeli, by oral administration of levamisole. J. Fish. Sci. Tech., 1, 42-47
  12. Kitao, T., T. Yoshida, D. P. Anderson, O. W. Dixon and A. Blanch. 1987. Immunostimulation of antibody-producing cells and humoral antibody to fish bacterins by a biological response modifier. J. Fish Biol., 31, 87-91 https://doi.org/10.1111/j.1095-8649.1987.tb05298.x
  13. Kodama, H., N. Mukamoto, T. Baba and D. M. Mule. 1994. Macrophage- colony stimulating activity in rainbow trout Oncorhynchus mykiss serum. (in) J. S. Stolen and T. C. Fletcher(eds), Modulators of fish Immune Responses Vol. 1, SOS Publication, Fair Haven, NJ. pp. 59-66
  14. Matsuyama H. A., M. H. M. Nakao and T. Yano. 1985. Optimum conditions for the eassy of hemolytic complement tiger of porgy (Pagrus major) serum. J. Fac. Arg. Kyushu Univ., 30, 149-158
  15. McPhearson, R. M., A. DePaola, S. R. Zywno, J. M. L. Motes and A. M. Guarino. 1991. Antibiotic resistance in gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture, 99, 203.211 https://doi.org/10.1016/0044-8486(91)90241-X
  16. Nikl, L., T. P. T. Evelyn and L. J. Albright. 1993. Trials with an orally and immersion-administered $\beta$-1,3 glucan as an immunoprophylactic against Aeromonas salmonicida in juvenile chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Org., 7, 191-196 https://doi.org/10.3354/dao007191
  17. Ogier, D. B. M., C. Quentel, V. Fournier, F. Lamour and R. Le Gouvello, 1996. Effect of long-term oral administration of $\beta$glucan as an immunostimulant or an adjuvant on some nonspecific parameters of the immune response of turbot Scophthalmus maximus. Dis. Aquatic Organisms, 26, 139-147 https://doi.org/10.3354/dao026139
  18. Pickering, A. D. 1992. Rainbow trout husbandry: management of the stress response. Aquaculture, 100, 125-139 https://doi.org/10.1016/0044-8486(92)90354-N
  19. Raa, J., G. Torstad, R. Engstad and B. Robertsen. 1992. The use of immunostimulants to increase resistance of aquatic organisms to microbial infections. (in) M. Sharif, R. P. Subasighe and Arthur, J. R. (eds.), Dis. Asian A. Vol. 1. Fish Health Section, Asian Fish. Soc., Manila, Philippines, pp. 39.50
  20. Robertsen, B., G. Rorstad, R. Engstad and J. Raa. 1990. Enhancement of non-specific disease resistance in Atlantic salmon, Salmo salar L., by a glucan from Saccharomyces cerevisiae cell walls. J. Fish. Dis., 13, 391-400 https://doi.org/10.1111/j.1365-2761.1990.tb00798.x
  21. Robertsen, B., R. E. Ehgstad and J. B. Jorgensen. 1994. $\beta$-glucan as immunostimulation in fish. (in) J. S. Stolen and T. C. Fletcher (eds.), Modulators of Fish Immune Response Vol. 1, SOS Publications, Fair Haven, NJ, pp. 83-99
  22. Sakai, M., 1999. Current research status of fish immunostimulants. Aquaculture, 172, 63-92 https://doi.org/10.1016/S0044-8486(98)00436-0
  23. Scott, A. L. and P. H. Klesius. 1981. Chemiluminescence: a novel analysis of phagocytosis in fish. Develop. Bio. Standardzation, 49, 243-254
  24. Sim, D. S., S. H. Jung and S. D. Lee. 1995. Changes of blood parameters of the culture flounder (Paralichthys olivaceus) naturally infected with Staphylococcus epidermidis. Bull. Nat. Fish. Res. Dev. Age., 49, 149.155-157
  25. Siwicki, A. K. 1987. Immunomodulatory activity of leavamisole in carp spawners, Cyprinus carpio L. J. Fish Biol(suppl. A)., 31, 245-246 https://doi.org/10.1111/j.1095-8649.1987.tb05325.x
  26. Siwicki, A. K., D. P. Anderson and O. W. Dixon. 1990. In vitro immunostimulation of rainbow trout Oncohynchus mykiss spleen cells with lavamisole. Dev. Comp. Immunol., 14, 231-237 https://doi.org/10.1016/0145-305X(90)90094-U
  27. Siwicki, A. K., D. P. Anderson and G. L. Rumsey. 1994. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protects against furunculosis. Verter. Immun. Immunopathology, 41, 125-139 https://doi.org/10.1016/0165-2427(94)90062-0
  28. Solem, S. T., J. B. Jorgensen and B. Robertsen. 1995. Stimulation of respiratory brust and phagocytic activity in Atlantic salmon Salmo salar L. macrophages by lipopolysaccharide. Fish Shellfish Immunol., 5, 475-491 https://doi.org/10.1016/S1050-4648(95)80049-2
  29. Sung, H. H., G. H. Kou and Y. L. Song. 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp (Penaeus mondon). Fish Pathol., 29, 11-17 https://doi.org/10.3147/jsfp.29.11
  30. Verlhac, V., G. Jacques, O. Alex, S. Willy and H. Reid. 1996. Influense of dietary glucan and vitamin C on non-specific and specific immune response of rainbow trout, Oncorhynchus mykiss. Aquaculture, 143, 123.13391.400
  31. Wendelaar Bonga, S. E. 1997. The stress response in fish. Physiol. Rev., 77, 591-625 https://doi.org/10.1152/physrev.1997.77.3.591
  32. Won, K. M., S. M. Kim and S. I. Park. 2004. The Effects of $\beta$ -1,3/ 1,6-linked Gulcan in the Diet on Immune Responses of olive Flounder, Paralichthys olivaceus by Oral Administration. J. Fish Pathol., 17, 29-38
  33. Yano, T., R. E. P. Mangindaan and H. Matsuyama. 1991. Enhancement of the resistance of carp Cyprinus carpio to experimental Edwardsiella tarda infection, by some $\beta$-1,3 glucans. Nippon Suisan Gakkaishi, 55, 1815.18197
  34. Yoo, B. H., S. I. Park and S. K. Chun. 1992. Bactericidal action by complement of fish serum. J. Fish Pathol., 5, 9-18
  35. Yoshida, T., R. Kruger and V. Inglis. 1995. Augmentation of nonspecific protection in african catfish, Claria gariepinus (Burchell), by the long-term oral administration of immunostimulants. J. Fish Disease, 18, 195-198 https://doi.org/10.1111/j.1365-2761.1995.tb00278.x