References
-
Farin, G. (1982), A construction for visual
$C^1$ continuity of polynomial surface patches, Computer Graphics and Image Processing, 20(7), 272-282 https://doi.org/10.1016/0146-664X(82)90085-5 - Farin, G. (1986), Triangular Bernstein-Bezr Patches, Computer Aided Geometric Design, 3(2), 83-127 https://doi.org/10.1016/0167-8396(86)90016-6
- Gregory, J. A. (1986), N-sided surface patches, in: J.A. Gregory, ed., The Mathematics of Surfaces, Clarendon Press, Oxford, 217-232
- Gregory J.A. and Yuen P.K.(1992), An arbitrary mesh network scheme using rational splines, in: T. Lyche and L.L. Schumaker, eds., Mathematical Methods in CAGD II, Academic Press, New York, 321-329
-
Hahmann S. and Bonneau G.-P. (2000), Triangular
$G^1$ interpolation by 4-splitting domain triangles, Computer Aided Geometric Design, 17, 731-757 https://doi.org/10.1016/S0167-8396(00)00021-2 - Herron G. (1985), Smooth closed surfaces with drete triangular interpolants, Computer Aided Geometric Design, 2(3), 297-306 https://doi.org/10.1016/S0167-8396(85)80004-2
-
Hermann T. (1996),
$G^2$ interpolation of free form curve networks by biquintic Gregory patches, Computer Aided Geometric Design, 13, 873-893 https://doi.org/10.1016/S0167-8396(96)00013-1 - Hall R.and Mullineux G. (1999), Continuity between Gregory-like patches', Computer Aided Geometric Design, 16, 197-216 https://doi.org/10.1016/S0167-8396(98)00044-2
-
Loop C.(1994), A
$G^1$ triangular spline surface of arbitrary topological type, Computer Aided Geometric Design, 11, 303-330 https://doi.org/10.1016/0167-8396(94)90005-1 - Mann S., Loop C., Lonsbery M., Meyers D., Painter J., DeRose T. and Sloan K.(1992), A survey of parametric scattered data fitting using triangular interpolants, in: H. Hagen, ed., Curve and Surface Design, SIAM, 145-172
- Peters J. (1990), Local smooth surface interpolation: a classification, Computer Aided Geometric Design, 7, 191-195 https://doi.org/10.1016/0167-8396(90)90030-U
- Peters J.(1991), Smooth interpolation of a mesh of curves, Constructive Approximation, 7, 221-246 https://doi.org/10.1007/BF01888155
- Piper B.R.(1987), Visually smooth interpolation with triangular Bezier pathces, in: G. Farin, ed., Geometric Modeling:Algorithms and New Trends, SIAM, 221-233
-
Sarraga R.F.(1987),
$GC^2$ Interpolation of generally unstricted cubic Bézier curves, Computer Aided Geometric Design, 4, 23-39 https://doi.org/10.1016/0167-8396(87)90022-7 -
Shichtel M.(1993),
$GC^2$ blend surfaces and filling of n-sided holes, IEEE Computer Graphics and Its Applications, September, 68-73 - Shirman L.A. and Sequin C.H. (1987), Local surface interpolation with Bézier patches, Computer Aided Geometric Design, 4, 279-295 https://doi.org/10.1016/0167-8396(87)90003-3
- Van Wijk J.J.(1986), Bicubic patches for approximating non-rectangular control meshes, Computer Aided Geometric Design , 3, 1-13 https://doi.org/10.1016/0167-8396(86)90021-X
- Watkins M.A.(1988), Problems in geometric continuity, Computer-Aided Design, 20, 499-502 https://doi.org/10.1016/0010-4485(88)90012-7
-
Walton D.J. and Meek D.S.(1996), A triangular
$G^1$ patch from boundary curves, Computer-Aided Design, 28, 113-123 https://doi.org/10.1016/0010-4485(95)00046-1