Deposition of Al Doped ZnO Films Using ICP-assisted Sputtering on the Plastic Substrate

유도결합 플라즈마 스퍼터링을 이용한 플라스틱 기판 상의 Al이 도핑된 ZnO 박막 증착

  • Jung, Seung-Jae (School of Materials Science and Engineering, Seoul National University) ;
  • Han, Young-Hun (School of Materials Science and Engineering, Seoul National University) ;
  • Lee, Jung-Joong (School of Materials Science and Engineering, Seoul National University)
  • Published : 2006.06.30

Abstract

Al-doped ZnO (AZO) films were deposited on the plastic substrate by inductively coupled plasma (ICP) assisted DC magnetron sputtering. The AZO films were produced by sputtering a metallic target (Zn/Al) in a mixture of argon and oxygen gases. AZO films with an electrical resistivity of ${\sim}10^3\;{\Omega}cm$ and an optical transmittance of 80% were obtained even at a low deposition temperature. In-situ process control methods were used to obtain stable deposition conditions in the transition region without any hysteresis effect. The target voltage was controlled either at a constant DC power. It was found that the ratio of the zinc to oxygen emission intensity, I (O 777)/I (Zn 481) decreased with increasing the target voltage in the transition region. The $Ar/O_2$ plasma treatment improve the adhesion strength between the polycarbonate substrate and AZO films.

Keywords

References

  1. T. Minami, Semicon. Sci. Technol., 20 (2005) S35 https://doi.org/10.1088/0268-1242/20/4/004
  2. T. Minami, S. Suzuki, T. Miyata, Thin Solid Films, 398-399 (2001) 53 https://doi.org/10.1016/S0040-6090(01)01303-7
  3. M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, J. Vac. Sci. Technol., A19 (2001) 963
  4. S. Schiller, U. Heisig, K. Steinfelder, J. Strumphel, R. Voight, G. Teschner, Thin Solid Films, 96 (1982) 235 https://doi.org/10.1016/0040-6090(82)90247-4
  5. G. Szczyrbowski, G. Teschner, J. Bruch, European patent specification EP 0795623A1, (1997)
  6. H. Czternastek, A. Brudnik, M. Jachimowski, E. Kolawa, J. Phys. D: Appl. Phys., 25 (1992) 865 https://doi.org/10.1088/0022-3727/25/5/019
  7. J. Affinito, R. R. Parsons, J. Vac. Sci. Technol. A, 2(3) (1984) 1275 https://doi.org/10.1116/1.572395
  8. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J. H. Joo, J. J. Lee, Coat. Technol., 169-170 (2003) 41
  9. Y. H. Han, S. J. Jung, J. J. Lee, J. H. Joo. Surf. Coat. Technol., 174-175 (2003) 235 https://doi.org/10.1016/S0257-8972(03)00619-4
  10. S. J. Jung, B. M. Koo, Y. H. Han, J. J. Lee. J. H. Joo, Surf. Coat. Technol., 200[1-4] (2005) 862 https://doi.org/10.1016/j.surfcoat.2005.02.207
  11. S. Berg, T. Nyberg, Thin Solid Films, 476 (2005) 215 https://doi.org/10.1016/j.tsf.2004.10.051
  12. l. Safi, Surf Coat. Technol., 127 (2000) 203 https://doi.org/10.1016/S0257-8972(00)00566-1
  13. K. Ellmer, J. Phys. D: Appl. Phys., 33 (2000) R17 https://doi.org/10.1088/0022-3727/33/4/201
  14. T. Tsurumi, S. Nishizawa, N. Ohashi, T. Ohgaki, Jpn. J. Appl. Phys., 38 (1999) 3682 https://doi.org/10.1143/JJAP.38.3682
  15. E. Burstein, Phys. Rev., 93 (1954) 632 https://doi.org/10.1103/PhysRev.93.632
  16. T. S. Moss, Proc. Phys. Soc. London B, 67 (1954) 775
  17. W.-K. Choi, S.-K. Koh, H.-J. Jung, J. Vac. Sci. Technol., A14 (1996) 2366
  18. E. T. Kang, K. L. Tan, K. Kato, Y. Uyama, Y. lkada, Macromolecules, 29 (1996) 6872 https://doi.org/10.1021/ma960161g