Distribution of Relative Evapotranspiration Availability using Satellite Data in Daegu Metropolitan

위성 자료를 이용한 대구광역시의 상대적 증발산 효율 분포

  • Kim, Hae-Dong (Department of Environmental Conservation, Keimyung University) ;
  • Im, Jin-Wook (Department of Environmental Conservation, Keimyung University) ;
  • Lee, Soon-Hwan (Research institute for Basic Sciences, Pusan National University)
  • 김해동 (계명대학교 환경대학 지구환경보전학과) ;
  • 임진욱 (계명대학교 환경대학 지구환경보전학과) ;
  • 이순환 (부산대학교 기초과학연구원)
  • Published : 2006.12.30

Abstract

Surface evapotranspiration is one of the most important factors to determine the surface energy budget, and its estimation is strongly related with the accuracy of weather forecasting. Surface evapotranspiration over Daegu Metropolitan was estimated using high resolution LANDSAT TM data. The estimation of surface evapotranspiration is based on the relationship between surface radiative temperature and vegetation index provided by a TM sensor. The distribution of NDVI (Normalized Difference of Vegetation Index) corresponds well with that of land-used in Deagu Metropolitan. The temperature of several part of downtown in Deagu metropolitan is lower in comparison with the averaged radiative temperature. This is caused by the high evapotranspiration from dense vegetation like DooRyu Park in Deagu Metropolitan. But, weak evapotranspiration availability is distinguished over the central part of downtown and the difference of evapotranspiration availability on industrial complexes and residential area is also clear.

잠열과 관련된 지표면 증발산량은 지표 온도를 결정하는 중요한 요인이며, 이를 정확히 산정하는 것은 중규모 순환장 예보의 정확도와 밀접하게 관련된다. 본 연구에서는 고해상도인 LANDSAT 5 TM 자료를 이용하여 대구광역시의 상대 증발산 효율을 추정하였다. 증발산 효율 추정은 복사 온도/식생 지수의 관계식을 이용하였다. 식생 지수는 대구광역시의 실제 토지 이용도와 일치하였다. 도시 지역내의 공원 지역의 경우 낮은 복사 온도를 나타내었다. 이것은 두류공원과 같은 도심내 공원 지역의 고증발산에 기인한 것이다. 그러나 전체적인 도심지는 저증발산이 두드러졌다. 그리고 지표면 구성특징에 의하여 도심지 내 공단 지역과 주거 지역은 상대적인 증발산 분포에서 차이가 나타났다.

Keywords

References

  1. 이미선, 서애숙, 이충기, 1996, NOAA/AVHRR 자료 응용기법 연구. 대한원격탐사학회지, 12, 60-80
  2. 한국기상학회, 2001, 대기과학개론, 시그마프레스, 서울, 406 p
  3. 한진수, 이부용, 2005, 해남 농경지에서의 자유 수면 증발 관측과 해석. 한국농림기상학회지, 7, 91-97
  4. Boegh, E., Soegaard, H., Hanan, N., Kabat, P., and Lesch, L., 1998, A remote sensing study of the NDVI-Ts relationship and the transpiration from sparse vegetation in the Satellite based on high resolution satellite data. Remote Sensing of Environment, 69, 224-240 https://doi.org/10.1016/S0034-4257(99)00025-5
  5. Chander, G. and Markham, B., 2003, Revised LANDSAT 5 TM Radiometric Calibration Precedures and Post-Calibration Dynamic Ranges. IEEE Transcations on Geoscience and Remote Sensing, 41, 2674-2677 https://doi.org/10.1109/TGRS.2003.818464
  6. Friedl, M.A. and Davis, F.W., 1994, Sources of variation in radiometric surface temperature over a tallgrass prairie. Remote Sensing Environment, 48, 1-17 https://doi.org/10.1016/0034-4257(94)90109-0
  7. Gillies, R.R., Carlson, T.N., Gui, J., Kustas, W.P., and Humes, K.S., 1997, A verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index and surface radiant temperature. International Journal of Remote Sensing, 18, 3145-3166 https://doi.org/10.1080/014311697217026
  8. Goetz, S.J., 1997, Multisensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 18, 71-94 https://doi.org/10.1080/014311697219286
  9. Kim, J. and Yeo, C., 2005, The relationship among land use, vegetation and surface temperature in urban area. Journal of Korean Association of Geographic Information Studies, 8, 21-30
  10. Lee, S.-H., 1998, Numerical studies on impacts of topography and heterogeneous surface moisture estimated by satellite data on the local circulations. Ph.D. Thesis, University of Tsukuba. 121 p
  11. Liang, S., 2000, Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sensing of Environment, 76, 213-238 https://doi.org/10.1016/S0034-4257(00)00205-4
  12. Nemani, R.R. and Running, S.W., 1989, Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data. Journal of Applied Meteorology, 28, 276-284 https://doi.org/10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
  13. Nemani, R.R. and Running, S.W., 1997, Land cover characterization using multi-temporal red, near-IR, and thermal- IR data from NOAA/AVHRR. Ecological Applications, 7, 79-90 https://doi.org/10.1890/1051-0761(1997)007[0079:LCCUMR]2.0.CO;2
  14. Prihodko, K. and Goward, S.N., 1997, Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60, 335-346 https://doi.org/10.1016/S0034-4257(96)00216-7
  15. Sandholt, I., Rasmussen, K., and Andersen, J., 2002, A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213-224 https://doi.org/10.1016/S0034-4257(01)00274-7
  16. Taconet, O., Bernard, R., and Vidal-Madjar, D., 1986, Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAAAVHRR data. Journal of Climate and Applied Meteorology, 25, 284-307 https://doi.org/10.1175/1520-0450(1986)025<0284:EOAARU>2.0.CO;2
  17. Wan, Z., Wang, P., and LI, X., 2004, Using MODIS LAND Surface temperature and normalized difference vegetation index predicts for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing, 10, 61-72