금도금 방법으로 제작한 코일을 이용한 초소형 발전기의 저주파 진동 특성분석

이동호, 김성일*, 이윤표, 백창욱

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil Measured at Low Frequency

Dong Ho Lee, Seong-II Kim, Yoon Pyo Lee, Chang-Wook Baek

Abstract We have designed and fabricated coil structures by gold electroplating technique. The thickness, width, and length are 7 μ m, 20 μ m, and 1.6 m, respectively. With vibrating a magnet on the surface of a fabricated electroplated coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5 Hz to 8 Hz. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. We have rectified and stepped up the input voltage using a quadrupler circuit. After using the step up circuit, the measured voltage was 81 mV at 3 Hz and 235 mV at 6 Hz.

Key words Electroplating(전기도금), Micro power generator(초소형 발전기), Vibration(진동), Magnet(자석), Coil(코일), Rectifying circuit(정류회로)

* 한국과학기술연구원 시스템 연구부 ■E-mail : s-ikim@kist.re.kr ■Tel : (02)958-5737 ■Fax : (02)958-5739

Nomenclature

2

Hz : hertz mV : milli voltage

subscripts

MPG : micro power generator MEMS : micro electro mechanical system RPM : revolution per minute AC : alternating current DC : direct current

]. 서론

반도체 공정 기술이 발전됨에 따라 센서 및 휴대용 전자제품 의 크기가 작아지고, 소비전력도 현저하게 감소하는 추세이다. 일반적으로 대부분의 휴대용 전자제품은 에너지원으로 전지를 사용한다. 그러나 최근에는 RFID(Radio Frequency IDentification)⁽¹⁾ 소자나 무선통신소자 (wireless communication device) 등의 발전으로 전지를 사용하지 않는 자가발전소자의 개발을 위한 연구들이 많이 진행되고 있다. 즉 자석과 코일을 이용한 자가발전 소자나 광전효과를 이용한 태 양전지 또는 압전소자²⁻³ 등을 이용하는 연구가 활발하게 진행 중에 있다. 이 기술 중에서 자석과 코일을 이용한 발전기의 형 태는 우리가 사용하는 여러 가지 전력원 중 가장 많은 부분을 차지하고 있다. 크게는 대형 수력발전기부터 작게는 자전거에 사용하는 소형 자가발전기 까지 그 종류도 다양하다. 그러나 센서나 전자소자를 동작시키기 위해서는 특정 값 이상의 전압 이 필요하게 되고, 따라서 발생된 전압을 승압시키는 회로가 필요하다. 이 경우 전류 값이 매우 작아지게 되므로 충분한 전 하가 충전될 때까지 커패시터에 전하를 충전하는 것이 필요하 다. 이 방법은 마이크로 센서로부터 데이터를 주고받을 때 적 당한 방법이 될 수 있다. 일반적으로 발생된 전기는 커패시터 나 2차전지에 충전되고 특정의 필요한 값으로 충전되면 회로로 부터 센서로 동작에 필요한 전력이 공급된다⁽⁴⁾.

2. 개념

본 연구에서는 사각형의 spiral형태로 감격진 고정된 코일 위에서 외부의 진동에너지에 의해 자석이 수평으로 움직일 때 코일의 내부에서 기전력이 발생하는 현상을 이용한다. 기전력은 패러데이 법칙에 의해 발생한 유도기전력이며, 코일의 감긴 횟수와 자속의 시간적 변화율, 즉 왕복진동수에 비례한다. 자석이 외부 진동에 의해 직선 왕복운동을 하게 되면 전자기 유도현상에 의해 교류전압 V를 얻게 된다. 이 발전기에서 발생하는 전류는 교류이기 때문에 센서나 전자소자 등을 구동하기 위해서는 직류로 정류해 줄 필요가 있다. 또한 마이크로 자가발전기의 크기가 작아지게 되면 전압 값 또한 작아지게 되므로 필요에 따라 적당한 값으로 전압을 승압시키는 단계도 필요하다.

3. 실험

전기금도금 방법으로 MEMS 코일을 제작하고, 일정하고 균 일한 전압측정을 위하여 진동발생장치를 제작하고 이를 이용 하여 교류 전압 값을 측정하고 채배회로를 설치하여 직류 전압 값을 측정하는 실험을 하였다.

3.1 금도금에 의한 MEMS 코일의 제작

Fig. 1에 금도금 방법으로 코일구조를 제작하기 위한 공정 순서 개요도를 나타내었다⁵⁵. 먼저 Cr/Au 접착층을 증착하고

Fig. 1 금도금 방법으로 코일구조를 제작하기 위한 공정 개요도. (a) 접착층 증착(Cr/Au), (b) 포토레지스트(PR)를 사용한 코일구조 정의, (c) 금도금, (d) 포토레지스트 및 접착층 제거.

(Fig. 2a), 포토레지스트(PR)를 사용한 코일구조 정의한 후 (Fig. 2b), 금도금을 한다(Fig. 2c). 끝으로 포토레지스트 및 접 착층(Cr/Au)을 제거하면 공정이 완료된다. 그 후 개별소자로 절단한 후, 패드에 가는 금선으로 외부 전선과 연결하여 측정 을 하게 된다. Fig. 2 (a)와 (b)는 금도금 방법으로 제작한 MEMS 코일 구조를 주사전자현미경(SEM)으로 관찰한 사진이 고, Fig. 2(a)는 코일의 중심부분을 200배 확대한 사진이고 Fig. 2(b)는 MEMS 코일의 선 부분을 1600배 확대한 사진이 다. SEM 은 FEI 사의 Nova SEM 200 을 사용하였다. 두께는 7 µm, 선폭은 20 µm 이고, 코일의 안쪽에 위치한 패드의 크기는 200 µm x 200 µm 이다. 이때 제작한 MEMS 코일의 저항 값은 1.1 x 200 µm 이다.

3.2 진동측정장치

본 연구에서 주파수에 따른 진동에너지를 측정하기 위해 모 터의 회전 운동을 정확하고 일정하게 수평방향의 진동으로 변 환해주는 진동 발생장치를 제작하였다. Fig. 3은 진동발생장치 의 개요도이다. 크게 세부분으로 회전속도를 조절할 수 있는 속도 조절장치, 회전운동을 하는 모터부와 회전판 마지막으로 회전운동을 직선왕복운동으로 바꿔주는 슬라이더부로 구성되 어 있다. 구체적으로 진동 발생장치는 속도 조절장치와 속도변 환 모터, 선형베어링, 일반베어링 및 아크릴 몸체 등으로 이루

Fig. 2 금도금 방법으로 제작한 MEMS 코일 구조

어져 있다. 선형베어링 위에 슬라이더를 장착하여 자석을 왕복 하여 움직일 수 있게 하였다. 모터의 축에 원형 아크릴 판을 달 았고, 코일의 크기에 따라 자석의 진폭을 조절하기 위하여 원 형 아크릴판 위에 1㎝단위로 베어링을 설치하였다. 아크릴 판 이 회전을 하면 막대의 형태인 아크릴이 슬라이더에 직선 운동 의 형태로 에너지를 전달해준다. AC 속도변환 모터는 최대 600RPM까지 가능하고 이를 직선운동형태로 변환할 경우 진 동수단위로 환산하면 10Hz가 된다.

3.3 주파수 변화에 따른 발생전압 특성 분석

금도금으로 제작한 MEMS 코일과 진동발생장치를 이용하 여 교류전압을 발생시켰고 Fig. 4의 채배정류회로를 이용하여 교류전류를 직류로 바꾸고 전압을 채배하는 실험을 하였다. 이 때 전압은 작은 값이므로 다이오드선정에서 순방향 문턱 전압 이 작은 쇼트키다이오드를 사용하는 것이 바람직하다. 이 실험 에서 사용한 커패시터의 용량은 47 JuF 이였다. 위의 실험방법과 같이 진동발생장치를 이용하여 0.5 Hz에서 8Hz까지의 진동을

Fig. 3 진동발생장치의 개요도

만들어서 코일로부터 교류전압을 발생시켰고, 채배정류회로를 사용하여 직류전압을 얻었다. Fig. 5와 Fig. 6은 진동수 3Hz와 6Hz로부터 발생한 교류전압에서 채배정류된 직류전압을 측정 한 그림이다. Fig. 5와 Fig. 7을 비교하면 3Hz의 진동에서 채배 정류회로를 통과한 직류전압 81mV로 채배 되기 전의 교류전압 106mV 보다 25mV낮고, Fig. 6과 Fig. 8을 비교해 보면 6Hz의 진 동에서 채배정류회로를 통과한 직류전압 235 mV로 채배 되기 전의 교류전압 198mV 보다 37mV 높은 것을 알 수 있다. Fig. 9 는 0.5Hz에서 8Hz까지의 진동수에서 0.5Hz단위로 진동에 의한 교류전압과 채배정류된 직류전압을 나타낸 그림이다. 진동수 가 0.5Hz씩 증가하면 교류전압은 거의 일정하게 평균 16mV씩 증가하였지만, 비선형적으로 증가하였다. 결과적으로 채배 되 기 전의 교류전압의 증가율이 일정하게 증가 하였고. 채배정류 된 직류전압은 전압증가율이 점차적으로 증가 하여 약 4.5Hz에 서 전압 값이 같아진다. 4.5Hz 이후에는 채배정류된 전압의 증 가량이 채배정류 되기 전의 증가량보다 10mV 이상 큰 것을 알 수 있다. 따라서 4.5Hz까지는 채배정류회로를 사용하여 얻어진 이득이 채배회로 자체의 저항이나 커패시터와 관련된 손실보 다 작음을 알 수 있었고. 4.5Hz이상부터는 채배회로를 사용한 이득이 손실보다 더 큰 값을 갖고 있음을 알 수 있었다.

4. 결 론

전기도금 방법에 의하여 MEMS 코일을 제작하고, 이 코일 위에서 자석을 수평으로 왕복운동 시켜서 초소형발전기의 특 성을 측정하였다. 진동수가 3Hz에서 교류전압106mV 진동수 6Hz에서 교류전압 198mV가 발생하였다. 채배 정류 회로를 이용

Fig. 4 다이오드 4개와 커패시터 4개를 이용한 채배정류회로

Fig. 5 3¹2에서 발생한 교류전압106™

Fig. 6 6[⊞]에서 발생한 교류전압198₩

Fig. 7 3^{H₂}에서 채배정류한 직류전압 81 ₪

Fig. 8 6¹ 에서 채배정류한 직류전압 235 ₪

Fig. 9 채배정류되기전 전압과 채배정류된 전압의 비교

논문 2

하여 전압을 채배 시킨 결과 3Hz에서 81mV, 6Hz에서 235mV의 값을 얻었다. 진동수가 증가하면 채배되기 전의 교류전압은 주 파수에 선형적으로 비례하고, 채배 회로를 통한 직류전압은 비 선형적으로 비례한다. 약 4.5Hz근처에서 채배 되기 전 교류전 압과 채배 된 직류전압 값이 같아지고, 4.5Hz 이후에는 채배 정 류된 전압의 증가량이 채배 정류되기 전의 증가량보다 커졌다.

References

- I. Byfield, 1996. "Development in RFID", Sensor Review 16, 4, 4-5
- J.H. Ryu, A.V. Carazo, K. Uchino and H.E. Kim, 2001.
 "Magnetroelectric Properties in Piezoelectric and Magnetrostrictive Laminate Composites." Jpn. J. Apll. Phys. 40, 4948-4951

- (3) P. Smalser, 1997. "Power Transfer of Piezoelectric Generated Energy", US patent 5703474, Patent and Trademark Office, Washington, D.C.
- (4) C.B. Williams, R.B. Yates, 1996. "Analysis of a microelectric generator for microsystem." Sensors and Actuators, 52, 8-11
- (5) K. Kawabe, H. Koyama and K. Shirae, 1984. "Planar inductor", IEEE transactions on magnetics, MAG-20, 5

김성일

현재 : 한국과학기술연구원 시스템 연구부 (E-mail : s-ikim@kist.re.kr)

이윤표

현재 : 한국과학기술연구원 시스템 연구부 (E-mail : yplee@kist.re.kr)

이동호

현재 : 국민대학교 물리학과 한국과학기술연구원 시스템 연구부 (E-mail : dhlee7902@kist.re.kr)

백 창 욱

현재 : 중앙대학교 전자전기공학부 (E-mail :cwbaek@cau.ac.kr)