DOI QR코드

DOI QR Code

A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping

능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구

  • 이진형 (성균관대 대학원 기계공학부) ;
  • 이영관 (성균관대 대학원 기계공학부) ;
  • 이성근 (성균관대 대학원 기계공학부) ;
  • 이석한 (성균관대 정보통신공학부) ;
  • 김윤제 (성균관대 기계공학부) ;
  • 김훈모 (성균관대 기계공학부)
  • Published : 2006.08.01

Abstract

In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.

Keywords

References

  1. Binning, G., Quate, C. F. and Gerber, Ch., 1986, 'Atomic Force Microscope,' Phys. Rev. Lett., Vol. 56, pp. 930-933 https://doi.org/10.1103/PhysRevLett.56.930
  2. Bhushan, B., Israelachvili, J. N. and Landman, U., 1995, 'Nanotribology: Friction, Wear and Lubrication at Atomic Scale,' Nature, Vol. 374, pp. 607-616 https://doi.org/10.1038/374607a0
  3. Piner, R. D., Zhu, J., Xu, F., Hong, S. and Mirkin, C. A., 1999, 'Dip-pen Nanolithography,' Science, Vol. 283, pp. 661-663 https://doi.org/10.1126/science.283.5402.661
  4. Meister, A., Jeney, S., Liley, M., Akiyama, T., Staufer, U., de Rooij, N. F. and Heintzelmann, H., 2003, 'Nanoscale Dispensing of Liquids Through Cantilevered Probes,' Microelectron. Eng., Vol. 67-68, pp, 644-650 https://doi.org/10.1016/S0167-9317(03)00126-6
  5. Hong, S., Zhu, J, and Mirkin, C. A., 1999, 'Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter,' Science, Vol. 286, pp. 523-525 https://doi.org/10.1126/science.286.5439.523
  6. Hong, S., and Mirkin, C. A., 2000, 'A Nanoplotter with Both Parallel and Serial Writing Capabilities,' Science, Vol. 288, pp. 1808-1811 https://doi.org/10.1126/science.288.5472.1808
  7. Lewis, A., Kheifetz, Y., Shambrodt, E., Radko, A., Khatchatryan, E. and Sukenik, C., 1999, 'Fountain Pen Nanochemistry: Atomic Force Control of Chrome Etching,' Appl. Phys. Lett., Vol. 75, No. 17, pp. 2689-2691 https://doi.org/10.1063/1.125120
  8. Shalom, S., Lieberman, K., Lewis, A. and Cohen, S. R., 1992, 'A Micropipette Force Probe Suitable for Near-field Scanning Optical Microscopy,' Rev. Sci. Instrum., Vol. 63, No. 9, pp. 4061-4065 https://doi.org/10.1063/1.1143212
  9. Lieberman, K., Lewis, A., Fish, G., Shalom, S., Jovin, T. M., Schaper, A. and Cohen, S. R., 1994, 'Multifunctional, Micropipette Based Force Cantilevers for Scanned Probe Microscopy,' Appl. Phys. Lett., Vol. 65, No. 5, pp. 648-650 https://doi.org/10.1063/1.112259
  10. Vettiger, P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., Rothuizen, H. E., Stutz, R., Widmer, R. and Binnig, G. K., 2000, 'The Millipede - More than One Thousands Tips for Future AFM Data Storage,' IBM J. Res. Develop., Vol. 44, No. 3, pp. 323-340 https://doi.org/10.1147/rd.443.0323
  11. Zhang, M., Bullen, D., Chung, S.-W., Hong, S., Ryu, K. S., Fan, Z., Mirkin, C. A. and Liu, C., 2002, 'A MEMS Nanoplotter with High-density Parallel Dip-pen Nanolithography Probe Array,' Nanotechnology, Vol. 13, pp. 212-217 https://doi.org/10.1088/0957-4484/13/2/315
  12. Kim, K. H., Ke, C., Moldovan, N. and Espinosa, H. D., 2003, 'Massively Parallel Multi-tip Nanoscale Writer with Fluidic Capabilities --fountain Pen Nanolithography(FPN),' Proc. 4th Int. Symp. on MEMS and Nanotechnology, pp. 235-238
  13. Deladi, S., Berenschot, J. W., Tas, N. R., Krijnen, G. J. M., de Boer, J. H., de Boer, M. J. and Elwenspoek, M. C., 2005, 'Fabrication of Micromachined Fountain Pen with in Situ Characterization Possibility of Nano Scale Surface Modification,' J. Micromech. Microeng., Vol. 15, pp. 528-534 https://doi.org/10.1088/0960-1317/15/3/013
  14. Madou, M. J., 2002, 'Fundamentals of Microfabrication The Second Edition,' CRC, p. 148
  15. Sader, J. E., 1995, 'Parallel Beam Approximation for V-shaped Atomic Force Microscope Cantilevers,' Rev. Sci. Instrum., Vol. 66, pp. 4583-4587 https://doi.org/10.1063/1.1145292
  16. Colgate, E. and Matsumoto, H., 1990, 'An Investigation of Electro-Wetting-Based Microactuation,' J. Vac. Sci. Technol., Vol. A8, pp. 3625-3633 https://doi.org/10.1116/1.576516
  17. Sobolev, V. D.,'Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries,' J. Colloid Interface Sci., Vol. 222, pp. 51-54 https://doi.org/10.1006/jcis.1999.6597
  18. Yang, Lung-Jieh, Yao, Tze-Jung and Tai, Yu-Chong, 2004, 'The Marching Velocity of the Capillary Meniscus in a Microchannel,' J. Micromech. Microeng. Vol. 14, pp. 220-225 https://doi.org/10.1088/0960-1317/14/2/008
  19. Tirnoshenko, S. and Woinowsky-Krieger, S., 1959, 'Theory of Plates and Shells The Second Edition,' McGRAW-HILL Book Company