References
- Schuster, R. and Kirchner, V., 'Electrochemical Micro machining,' Science, Vol. 289, pp. 98-101, 2000 https://doi.org/10.1126/science.289.5476.98
- Park, J. W., Lee, E. S. and Moon, Y. H., 'A Study on the Electrochemical Micro-machining for fabrication of Micro Grooves,' J. of the KSPE, Vol. 19, No.4, pp. 101-108, 2002
- Ashida, K., Morita, N. and Yoshida, Y., 'Study on Nano-Machining Process Using Mechanism of a ?Friction Force Microscope,' JSME Int. J., Vol. 44, No. 1, pp. 244-253, 2001 https://doi.org/10.1299/jsmec.44.244
- Piner, R. D., Zhu, J., Xu, F., Hong, S. and Mirkin, C. A., 'Dip-pen Nanolithography,' Science, Vol. 283, pp. 661-663, 1999 https://doi.org/10.1126/science.283.5402.661
- Kolb, D. M., Ullmann, R. and Will, T., 'Nanofabrication of Small Copper Clusters on Gold (Ill) Electrodes by a Scanning Tunneling Microscope,' Science, Vol. 275, pp. 1097-1099, 1997 https://doi.org/10.1126/science.275.5303.1097
- Dagata, J. A., 'Device Fabrication by Scanned Probe Oxidation,' Science, Vol. 270, pp. 1625-1626, 1995 https://doi.org/10.1126/science.270.5242.1625
- Wilder, K. and Quate, C. F., 'Noncontact Nanolithography Using Atomic Force Microscope,' Appl. Phys. Lett., Vol. 73, No. 17, pp. 2527-2529, 1998 https://doi.org/10.1063/1.122504
- Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. and Smalley, R. E., 'Nanotubes as Nanoprobes in Scanning Probe Microscopy,' Nature, Vol. 384, pp. 147-150,1996 https://doi.org/10.1038/384147a0
- Snow, E. S. and Campbell, P. M., 'AFM fabrication of Sub-10-Nanometer Metal-Oxide Devices with inSitu Control of Electrical Properties,' Science, Vol. 270, pp. 1639-1641, 1995 https://doi.org/10.1126/science.270.5242.1639
- Snow, E. S., Jernigan, G. G. and Campbell, P. M., 'The Kinetics and Mechanism of Scanned Probe Oxidation of Si,' Appl. Phys. Lett., Vol. 76, No. 13, pp. 1782-1784, 2000 https://doi.org/10.1063/1.126166
- Davis, Z. J., Abadal, G., Hansen, O., Borise, X., Barniol, N., Perez-Murano, F. and Boisen, A., 'AFM Lithography of Aluminum for Fabrication of Nanomechanical Systems,' Ultramicroscopy, Vol. 97, pp. 467-472, 2003 https://doi.org/10.1016/S0304-3991(03)00075-5
- Abadal, G., Perez-Murano, F., Bamiol, N. and Aymerich, X., 'Field Induced Oxidation of Silicon by SPM: Study of the Mechanism at Negative Sample Voltage by STM, ESTM and AFM,' Appl. Phys. A, Vol. 66, pp. S791-S795, 1998 https://doi.org/10.1007/s003390051244
-
Chien, F. S. S., Chang, J. W., Lin, S. W., Chou, Y. C., Chen, T. T., Gwo, S., Chao, T. S. and Hsieh, W. F., 'Nanometer-Scale Conversion of
$Si_3N_4$ to$SiO_x$ ,' Appl. Phys. Lett., Vol. 76, No.3, pp. 360-362, 2000 https://doi.org/10.1063/1.125754 -
Klauser, R., Hong, I. H., Su, H. J., Chen, T. T., Gwo, S., Wang, S. C., Chuang, T. J. and Gritsenko, V. A., 'Oxidation States in Scanning-Probe-lnduced
$Si_3N_4$ to$?SiO_x$ . Conversion Studied by Scanning Photoemission Microscopy,' Appl. Phys. Lett., Vol. 79, No. 19, pp. 3143-3145, 2001 https://doi.org/10.1063/1.1415415 - Steckl, A. J., Mogul, H. C. and Morgen, S., 'Localized Fabrication of Silicon Nanostructures by Focused Ion Beam,' Appl. Phys. Lett., Vol. 60, No. 15, pp. 1833-1835, 1992 https://doi.org/10.1063/1.107179
- Yavas, O., Ochiai, C., Takai, M., Hosono, A. and Okuda, S., 'Maskless Fabrication of Field-Emitter Array by Focused Ion and Electron Beam,' Appl. Phys. Lett., Vol. 76, No. 22, pp. 3319-3321, 2000 https://doi.org/10.1063/1.126638
- Kan, J. A., Bettiol, A. A. and Watt, F., 'ThreeDimensional Nanolithography using Proton Beam Writing,' Appl. Phys. Lett., Vol. 83, No.8, pp. 1629-1631, 2003 https://doi.org/10.1063/1.1604468
- Austin, M. D. and Chou, S. Y., 'Fabrication of 5 nm Linewidth and 14 nm Pitch Features by Nanoimprint Lithography,' Appl. Phys. Lett., Vol. 84, No. 26, pp. 5299-530 1, 2003 https://doi.org/10.1063/1.1766071
- Park, J. W., Kawasegi, N., Morita, N. and Lee, D. W., 'Tribo-Nanolithography of Silicon in Aqueous Solution based on Atomic Force Microscope,' Appl. Phys. Lett., Vol. 85, No. 10, pp. 1766-1768, 2004. https://doi.org/10.1063/1.1773620
- Park, J. W., Kawasegi, N., Morita, N. and Lee, D. W., 'Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH Solution,' J. Manuf. Sci. Eng.-Trans. ASME, Vol. 124, No.4, pp. 801-806, 2004. https://doi.org/10.1115/1.1811114
- Park, J. W., Lee, D. W., Kawasegi, N. and Morita, N., 'Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography,' J. of the KSPE, Vol. 22, No. 2, pp. 194-201, 2005
- Kawasegi, N., Morita, N., Yamada, S., Takano, N., Oyama, T. and Ashida, K., 'Etch Stop of Silicon Surface Induced by Tribo-Nanolithography,' Nanotechnology, Vol. 16, pp. 1411-1413, 2005 https://doi.org/10.1088/0957-4484/16/8/073
- Bhushan, B., 'Nanotechnology,' Springer, p. 819, 2004
- Park, J. W., Lee, S. S., So, B. S., Jung, Y. H., Morita, N. and Lee, D. W., 'Characteristics of Mask Layer on (100) Silicon Induced by Tribo Nanolithography with Diamond Tip Cantilevers based on AFM,' J. Mater. Process. Technol., accepted https://doi.org/10.1016/j.jmatprotec.2006.11.151