Abstract
In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.
본 논문에서는 얼굴 영상의 에너지 분포 특성을 이용한 새로운 특정추출 방법을 제안한다. 제안된 방법은 얼굴 영상의 에너지 확률과 에너지 랩을 이용해서 데이터 차원이 축소된 유효정보의 추출 및 유효정보의 LDA 해석에 기반을 둔다. 일반적으로, 얼굴 영상은 고유한 에너지 분포 특성을 가지고 있다. 그러나 기존의 많은 DCT 기반 방법들은 이러한 얼굴 영상의 특성을 효과적으로 이용하지 못하는 단점이 있다. 제안된 방법은 이러한 기존 방법의 단점을 개선하기 위해 다음의 3단계 방법을 사용한다. 먼저, DCT 도메인에서 얼굴의 에너지 확률 개념을 정의하고, 이러한 에너지 확률로부터 얼굴의 에너지 맵을 생성한다. 마지막으로, 에너지 확률 지도에 위치한 주파수 계수들에 대한 LDA 적용 및 해석을 통하여 특정 벡터 추출 및 인식을 수행한다. 제안된 방법은 ETRI 데이터베이스에서 96.8%, ORL 데이터베이스에서 100%의 인식률을 보인다. 실험을 통하여 인식 성능의 개선뿐만 아니라, 특정 벡터의 차원 축소에도 효과가 있음을 알 수 있다.