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Robust Control Design for Flexible Joint Manipulators:
Theory and Experimental Verification

Dong Hwan Kim and Won Hb Oh

Abstract: A class of robust control for flexible joint manipulators with nonlinearity mismatched
uncertainty is designed based on Lyapunov approach. The uncertainties are unknown but their
values are within certain prescribed sets. No statistic information of the uncertainties is imposed.
The control which utilizes state transformation via virtual control is proposed. The resulting
robust control guarantees practical stability for the transformed system and later the stability for
the original system is proved. The designed robust control is implemented by experiments in a 2-

link flexible joint manipulator.

Keywords: Flexible joint manipulator, Lyapunov approach, mismatched uncertainty, robust,

virtual control.

1. INTRODUCTION

The control design problem for flexible joint
manipulators that are nonlinear and contain
uncertainty, especially mismatched uncertainty is
introduced. It has been shown that joint flexibility has
a significant influence on system performance
compared with rigid manipulators. The joint
flexibility must be taken into account in both
modeling and control design to achieve high
performance. Gear elasticity, chain, and shaft wind up
are common sources of joint flexibility. From
modeling point of view internal deflection between
the actuator and the driven link can be approximated
by inputting a torsional spring at each joint.

One of the models of flexible joint manipulator was
presented in [1] and we adopt this model in this paper.
So far there have been various efforts devoted to the
study of control for flexible joint manipulators. The
references of these efforts are cited in [2]. These
include exact model based approach, adaptive control,
sliding modes [3,4], and robust control [5]. The exact
model based approach includes singular perturbation
[6], and feedback linearization scheme [7,8]. The
control schemes which are designed using this
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approach require exact knowledge of the robot
parameters. From all practical aspects, it is necessary
to study the control design issue in the presence of
uncertainty.

The use of adaptive control for flexible joint
manipulators has been reported in numerous
literatures. The control allows the existence of
uncertainty in system models. The adaptive control
schemes developed in [9,10]. In adaptive control the
main concern has been the possible excessive
transient response before adaptive parameter
converges. Robust control and utilized feedback
linearization is used in [11]. This approach uses a two-
step estimation procedure. Stability analysis was not
investigated in the closed-loop system when
significant parameters are permitted in the open-loop
system. In the past, numerous control strategies have
been constructed based on a structural condition of the
uncertainty, namely, the matching condition [12,13].
However, this condition does not hold in certain cases
which include the flexible joint manipulator. For such
a system we do not have a control input for each mode
and therefore uncertainty is no longer matched.
Several works have addressed the issue that the
matching condition of a system does not hold. Other
methods without using a two-stage algorithm are
reported such as sliding mode control using a back
stepping [14,15]. This control starts by taking the
output as link angle, showing a convergence under the
particular selection of the parameters bounds.
Adaptive control using a backstepping [16] is also
reported, however, yielding only convergence to some
bound. This usually excludes uniform stability and
uniform boundness which are crucial condition in real
robot control.

Considering all aspects, we proposed a robust
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control using a backstepping algorithm under
acceleration and jerk feedbacks which limits its
application in some cases. The current approaches
adopted in this paper are mainly inspired by the
backstepping method, which is referenced by [17,18].
In this paper we consider the control problem for
flexible joint manipulators. With robust control in the
transformed system we can guarantee practical
stability, later can also verify practical stability and
good performance of the original system. By using a
2-link flexible joint manipulator, the robust control
performance is verified through experiments.

2. FLEXIBLE JOINT MANIPULATORS

Consider an » serial link mechanical manipulator.
The links are assumed rigid. The joints are however
flexible. All joints are revolute or prismatic and are
directly actuated by DC-electric motors. The dynamic
equation of motion of the flexible joint manipulator
can be expressed in terms of the partition of the
generalized coordinates

D(gh O||q N Clq1.90491 . G(qy) 0
0 Jjlld 0 0

+[ K(q1 - 92) }:[0}
~K(g1—q)] |u]

Here g is the n-vector of joint position. D(g) is the
link inertia matrix and J is a constant diagonal matrix

C4,9)q
represents the Coriolis and centrifugal force, G(g)
represents the gravitational force, and u denotes the
input force from the actuators. Next, for the flexible
joint robot define vectors g, = [q(z)q(4)... q(2"_2"
q(Z")]Tand q2=[q(1)q(3)... q(2n—3)q(2n—1)]T, where
3)

representing the inertia of actuator.

q(z)’ q(4) ... are link angles and q(l); g’ ... are joint
angles.
Let g= {ql :I @
92

be the 2n-vector of generalized coordinates for the
system. We model the joint flexibility by a linear
torsional spring at each joint and denote by K the
diagonal matrix of joint stiffness. K is a constant
diagonal matrix representing the torsional stiffness

between links and joints (hence K -1 exists).

3. UNCERTAIN SYSTEM AND PRACTICAL
STABILITY

We consider the following class of uncertain
dynamical systems

EO=AED), )+ BE®), Hu(r), 3)

where reR is the time, &(f) € R" is the state, u(?)

€ R™ is the control, o(f) e R® is the uncertainty,
SUE@), D) is the system vector, and B(&(¥), o(),1) is
the input matrix. From now on, unless otherwise
stated, the norms in this paper are Euclidean.
Definition: A feedback control u(f) = p(&(¢), ©)
renders the uncertain dynamical system (5) practically
stable if there exists constant d ; >0 such that for any

initial time R and any initial state & € R”, the

following properties hold [19].

i) Existence and continuation of solutions
ii) Uniform boundedness

iii} Uniform ultimate boundedness

iv) Uniform stability

4. VIRTUAL ROBUST CONTROL DESIGN

The control design procedure is carried out
successively. System (1) is considered. We first
consider the system with constant uncertainty. Let

X1=q,, 0,=q;, X3=q,, and X4=¢, also let
q=[XT XV, x=(XTxI{,and x,=[XTx]7.

Then we construct two subsystems as follows:

Ny :x () = fi(xq(0),01) + B (x (), 01)x, (1),  (4)

Ny 13y (8) = fo(x(2),07) + By (0 Ju(?), (5)
where
B 4
fl(xl’o-l)_[fll(xlﬁl)}

Six,o) = -p! (91,00)C(q1,91,01)q
- D (4),60)G(q,,07) - D™ (g1,0))K (o )y

f(xa){ » }
20TV N eK(0)ay + T () K () |

3 B 0 0
M= bt ok ey o)

= . 6
By(o) L-‘ (02)} ©

Here o©,€R? and o ,eR°? are uncertain

parameter vectors in N; and N,, respectively.
Assumption 1: The parameter vectors are such that
0 1€X, <R and o ,€X, c R where X, Z,are
prescribed and compact.
As seen from (6) f;, f5, By, and B, can not be
decomposed by a nominal part and uncertain part
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(mismatched system). In other words, the total system
(4)-(5) does not meet the matching condition [19].
Thus, the control design proposed by [14] does not
apply directly. The control design here should tackle
the system with nonlinearity and mismatched
uncertainty. For a system with constant parameters we

have the skew-symmetric property in matrix D(quoq)

—2C(q1,41,01) [2]. This holds for flexible joint
manipulators as well as rigid manipulators. The
control problem is to design u which renders the
system ayy8,; practically stable. To design robust

control, we propose a two-step procedure. Let us
rewrite the first part of (1) as

D(qy)gy +Clq1,9))d + G(q1) + Kq

(7)
= Kuy + K(q1 — ),

where the “control” u, is implanted, called a virtual
control. This does not affect the total dynamics in the
subsystem N;. The purpose of introducing u; is to
design a controller for the first subsystem, and it is
later embedded to the real control design. For given

S) =diag[Si; 1,551 >0, we choose a function

P R"xR" = R+such that forall & €%,

21,410 21 61 (a1, 41,0 1l (8)
where

4 (q1,491,01) =-G(q,01) - K(o))q

) ) )
+D(qy,01)8141 + C(q1,41,01)8141-

@ comes from the mathematical derivation from the
proof, which is shown in (37) in driving the derivative
of Lyapunov function. If we define a different
Lyapunov function ¢ can take a different function.

p is a bounding function of the defined ¢. This
function needs to be obtained as small as possible to
avoid the possible over gain problem. S is utilized for
mathematical derivation from the defined Lyapunov
function. Using this Lyapunov function, of course, the
positive definite and decrescent condition satisfied. S;
has a physical meaning in terms of weighting between
Z, (link angle) and Z; (link angular velocity) and this

also holds for the weighting between P gain Kyt
and D gain K 1.

The stiffness matrix K can be decomposed into two
parts, namely, the nominal and uncertain portions:

K=K +AK, (10

where K is the known nominal portion and AK is
the uncertain portion. Furthermore, there exists a

matrix E € R™" such that

AK =KE . (11)

Therefore we can express K =E(1 +E), where I

denotes the identity matrix.
Assumption 2: There exists a constant Ag >0

such that

A = D Ay [1 + KE(oy )E‘l} > 0. (12)

g1€21

Here, Ay (1), Agax (/I) represents the minimum,
and maximum eigenvalue respectively for the

corresponding matrix [l. Since K and E are
diagonal matrices, (15) is satisfied if E is such that

e, =min{min (¢;{(0))} >-1, i=L--n, (13)
i gj€2]

where ¢; is the diagonal component of E.

Assumption 3: The inertia matrix D(q;) is uniformly
positive definite and uniformly bounded from above
and below; that is, there exist positive scalar constants

o and o such that

ol <D(q)<ocl, Vg eR". (14)

Remark 2: This assumption does not hold for
arbitrary manipulators. Consider the manipulator with
one revolute joint and one prismatic joint. There does

not exist a finite o forall ge R2.

Let the function op:R* — R, be chosen such
that it is ||y1i||<81’ (i.e., 2-times continuously
differentiable) and

prz(+e,) " p(x). (15)

For given scalar g >0, choose virtual control
such that

—1
w@)=K (K1) =K@+ p(a(0), o0 (0),€))

—1 .
=K (g (1) +S14, (1)), (16)
where
Kpl = diag[kpli]nxn’kpli>0’
Kvl = diag[kvli]nxn’kv1i>0’
T
My =ty > pr=lenpn - P

(17)

]T

b

py; is given by

i)
a1 A

P ()
—sin['u;’igl}?l(xl)’ if |a; o) S €1, =12,

1

if e o) > & (18)
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Note that
(X .
<~ M) o), i 05 )<
T R (19)
>-HC o), if - e S () <0,
1

and ” pliHS £- Py >0 is a scalar design parameter.
The 4 (-) consists of PD control, and additionally
p; (). The role of p; (*) plays a role in compensating
the uncertainty. The choice of f; will be made later.

The proposed form yields the convergence region
which makes it adjustable by assigning small &,

and &, which will be shown later. Even though

sin () function is adapted to this control scheme,.still
convergence region remains.

5. STATE TRANSFORMATION

We now transform the system (N;,N,) to a

system (N;,N,) as follows. First let
T T T
T T 5T T T
Z :I:Zl Z{] ) =[Z3 Z4 :I ,andZ=|:Zl Zz] ,
where

Zi=q, Zy=4, Zy = Qo -, Z4 = 4 -1, (20)

This implies that z; = x; and z, = X, — [#, #]". From
now on, we omit the argument on uncertainty in
D(q;, 01), C(q,q1,01), and K(op) ete. if no
confusion arises. Otherwise it will be denoted. Next,

the dynamics of the manipulator are expressed in
terms of z:

Ny :D(Z) 7 =-C(Zy,2))Z, - G(Z)) - KZ,
+ KZ3 + Kul )
N, 1 JZy = ~Jiiy = KZy + KZ; — Kuy +u. (22)

@n

Therefore, the dynamics of N, contains the virtual

control u;. As a sequel, the dynamics of Nz contains
the information of u; and ij.

We now propose the control design. For given S; =
diag[Si] ,xn» $2>0, we choose a known scalar function

Py R¥xR"xR" — R+ such that

pz(xl,Z3,Z4)2|\¢2(x1,Z3,Z4,01,02)“, (23)
where
¢2(x1,Z3,Z4,o'1,0'2) (24)

= _J(O'l)ul(xl,Z3,Z4,0'l,O'l)_K(O'I)Z3 +K(01)Zl
- K(oy)u(x1) +J(02)8, 23,

Similar to ¢ and p;, which were explained before,
¢, comes from the mathematical derivation from the
proof, which is shown in (45) in driving the derivative
of Lyapunov function ¥,. Based on the Lyapunov

function ¥, which includes a positive definite matrix
S,, the second part of the second line in (45) can be
defined by a function ¢,. The bounding function on

¢, can be defined by p,. Next, the control u(f)
deals with the bounding function p, by introducing

p2 in u(®). S, is also utilized for mathematical
derivation from the defined Lyapunov function V5.
Using this Lyapunov function, of course, the positive
definite and decrescent condition are satisfied. S, has
a physical meaning in terms of weighting between Z;
(joint angle-virtual control u;) and Z; (joint angular
velocity-#; ) and this holds for the weighting between

P gain K,, and D gain K,,.

For given scalar &, > 0, choose the control input u

as follows:

u(t) ==K, Z5(t) = Kyp Z3(1) + pp (% (1), Z3(1), Z4 (1), 62)
(25)

where

P2(%1,25,24,82)

Hr(21,2) Pz(x1szsaz4)lf "ﬂ2(21’22)">g2

| reEz) (26)
Z{,2 i (z1, )| <&,
(7 2)p2(x1,Z3,Z4) if |m(z.n)|<e
&
1y (21,29) = (23 + 82 23) py (21, 23, Zy),
KP2 = diag[kpzi] nxn > kPZi >0, (27)

KVZ = diag[kVZi] nxn e kai > 0.

As stated before, the final controt form of u(-) consists
of PD control and pa(*). The last term p,(-) is also
compensating the uncertainty and utilizing the virtual
control u;(:).

Remark 3: The control u(z) relies on the accelera-
tion and jerk signals. This can be undesirable due to
possible noise or signal contamination, and it also
occurs in case of sharp velocity or acceleration change
However, in implementing the experiment, the
acceleration or jerk can be adapted by computing the
simple difference equation in a digital way as follows,
which is excluding the complex computation. Then,
the other remain terms can be put into the uncertainty
terms, and eventually the robust control u(#) counts for
uncertainty by taking the bounding function. The
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experimental results shown later illustrate the
justification of this method.

Zy=qy—u
_ DAY —u (A gy )+ () ()
At

To avoid the differentiation of signals, a low pass
filter design can be one of solutions. Also, we
proposed a simple way of differentiating the signals,
which seems to raise many questionable issues.
Counting for acceleration feedback in the proposed
controller, the possible spiky signals or noise can be
embedded into the modified bounding function at
¢, (), which is modified as follows.

u(t)=—K 73 =Ky Z5 + py
=-K 225 —K,(§, —4)Z3 + p;

= _KpZZ3 - Kv2 (q2 U )n
- KVZ (q2 - ul )un + Dy,

(29)

where represent the

(42 —ty), and (gy —1y)y,
nominal value calculated from the direct
differentiation and noise-involved part, respectively.

The (¢, —4;),, part can be put into the modified
function p, (*), yielding to a modified bounding
function. However, there might be a question how we
can estimate the bound of (g, —#,),,. In theoretical
basis, this can be set by assigning a reasonable
bounding function (affine or polynomial). If spiky
signals crucially occur or noise are seriously affecting
the control performance, then the controller u(r) takes
the computed values and the other values related to
the noise can be confined by a bounding function
|®,[ < o, as shown in (23) and (24). Selection of S,

in (19) for ;:
Let

Ao =min{ Ay, (Ky2)s Agin (52K )] (30)

Step 1: Select 4, and compute proper value for

A, where max ||K“£/1k and compute Ap in (12).
o1€X)
A
24,
Step 3: By @, obtained from Step 2 choose f
such that £ > O .
225
Theorem 1: Subject to Assumptions 1-3, the
system (21)-(22) is practically stable under the control
(25). Furthermore, the size of the uniform ultimate

Step 2: Choose ; suchthat o >

boundedness region can be made arbitrary small by a
suitable choice of & and &,.

Proof: Choose Lyapunov function candidates as
follows

V(lezz) = VI(ZI)+V2(Z2)’ (31)

where

1
Niz)= E(Zz +82) D(Zy +8,Zy)

] (32)
+5le (K 1+ S1K,1) 2,
1
Vo(zy) = 5(24 +8,23) J(Zy + 8,23)
: (33)
+ EZ3T (Kpp +5:K,2)23,
and
K, =K, +KEK'K,, (34)

From (34)-(35) we see that K 1 and K, are

positive definite. To show that both ¥V, and V, are
legitimate Lyapunov function candidates, we shall
prove that both V, and V> are positive definite and
decrescent. The details are shown in [20].

The derivative of V; along the trajectory of the
controlled system (21) is given by

Vi=(2+82) D(Z+82)
+%(Zl +52,) D(2 +52) (36)
+z] (I?p1 +8,K,, )Zl.

From the skew-symmetric property in D —2C it can
be seen that

. . T .
Vi=(2+87) (-G-KZ + D82, +CS 2,
+K w4 +KZ)+ 2] (K +$iK)5. (37
According to (9), it can be seen that
. . T —
Vi=(Z1+82) (4 +Ku +KEu,) )
+Z{ (K + 81K, )21 +(Z, +5,2) KZs.
It follows from (16)
. . T
h=(Z+52) #

(2 +812 )T (‘ Zi-KuZy+p - B2+ 52, ))
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(2 +8,2) KEK™!
(-KnZi ~KuZi+ 1 - B (Z+52))
2l (B + 1K )21 +(2+8,2,)' K2y
<-Z{ KyZ - 2[ $iK 12, +(2, + 5,2, )T &
Hz+82 )TpI +(2+82) RER'py
ez + sz (2 +52,) kzs
<—hlal’ - Aie|z + sz
Wz +82) h+(2+82) p
Wz +82) m+(z,+8,2) KEK'p, (39)

(2 +82) Kz,
where

A =min {ﬂmin (Kot ) Amin (Sprl)}« (40)

If Jeas]> 2,
(Zl +8,7; )T é + (Z'1 +5,2, )T ) +(Zl A )T KEK ' p,
n . n .
< ZI}ZU + SliZuH,BI + Z(Zli + Slizli)pli
i1 P
n
+ Z(Zli + SliZIi)eipli

=1

1
s Zn:||zli + SliZIi"(l +en) Py
i=1

) "Zy + 812y, &

n
+Z(Zli +S1iZ]i){
i=1

Zy; + 8,2y ]

+Zn:(Zli +81uZy; e (_M ]

a1 |Zli + SliZIi” &

<3l szl en) o
"=‘n . (41)
- Z"ZU + SliZIi”pl - emZIIZ]i + SliZIi“pl =0.
i=l i=l

If s < &,

(Z,+5,2 )T 4 +(2,+5.2, )T n+(Z+82 )T KEK 'p,

n n 2
<Y+ sz Y F(—%—]
i=l i=1 1

lZIi +8y,Zy;

2
— €y i”zu + SliZIi"2 LZI“
i=1 1

M=

no 2p12
(1+em) o1 = (1+€,) 2|20 + Sii 2 —€I—(42)
j=1

-
1l
—

Sn 1+€m)€1 ‘
4

.. 1
Based on inequalities ab < 5(512 +b° ),a,b € R, and

|25 Hz <|z, ||2 , we have that for any constant @, >0,
(4 +5.) K2 <[ + 2] 260 <1
1 . 2 1 _
s(aaﬁ”zl +85.2 +Zo 1l|23112]”’<”
1 . 2 1
(Sl saf + 2ol ik

< Gwl |21+ 81z, + %w{l ||22“2jﬂ,k, (43)

This leads to

V<4 +%

~ A1+ 25)|2 + Sz
+Ga>, |2, + 5.2, +%a)1_] 1|zz||2)zk. (44)

Next, the derivative of V,(z,) along the trajectory of
(22) is given by

Vo =(23+8,25) J(Z3 +5223)
+ 73 (Ko +5:K,2 ) 23

=(25+8,25) (45)
(it — KZy + KZ, - KZ, — Kuy +u + JS, Z3 )

+73 (K

2t Sszz)Z3.

It follows from (24), and (25)

Vy=(2;+8,2;) (¢ +u)+ 2] (K

2t Sszz)Z3

<(2+8523) Py +(25+5:23) by~ ool y
<(Z+52) p |25 + 8,25 03 - By | 2,
If ||,L12||>82

(23 +5,2 )T P2 +|Zs + 5,23 s

(7452, )T[_”z_ju pz) A
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<=l [+l |l (47)
=0.

If ] <
(23+5,2 )T P +”Z3 +Szz3n,02

BB s

4%+%4f{
(43)

!
< Ml

&

Thus, V, is upper bounded:

v, <A |off + ‘%2 . (49)

Now, using (44) and (49),

. (50)
—4’”—)‘1—/3,,1,5 |2+ 82,

If ﬂz—%a’l_lﬂk>0 and lgllE_%a)]ﬂk>0,thenwe

have

V'S—min(ﬂi,éq_—%a)lﬂk]”zuz+I;, 51D

n(l+e,)g

where k = +%2 . Following (51) for r, 20,

if ”20” <r,, we can satisfy the requirements of
uniform boundedness, uniform ultimate boundedness
and uniform stability [13]. It can be seen that R, > 0

as both g and & — 0. Therefore if both & and
& —0, then d, convergesto 0. Q.E.D.

Theorem 2: Subject to Assumptions 1-3, the
control u given by (25) renders the original dynamic
system N, and N, in (4)-(5) practically stable.

Proof: The practical stability has been shown by
referring [20].

6. EXPERIMENTAL VERIFICATIONS

Consider a two-link flexible revolute joint
manipulator which is modelled and manufactured in
our research group (Figs. 1, 2). The designed two-link
manipulator consists of link, timing belt and spring for
generating or adjusting a stiffness between motor and
link, electric motor, and motion controller. Here, a
spring is introduced to generate a tension on the

501

Fig. 1. A schematic diagram of two degrees of free-
dom manipulator with flexible joints.

Fig. 2. Experimental setup for two degrees of freedom
manipulator with flexible joints.

timing belt and pulley, which results in a torsional
moment on the link and joint. The real two link
manipulator with flexibility for experimental
verification is illustrated in Fig. 2. The joint flexibility
is installed at each space between link and motor. Let

T
link angle vectors g :[q(z)q(“) ] and joint angle

T .
vectors ¢, :[q(l)qa)] . The uncertainty sets X,

and 22 '](0-1)’ K(O-l)’ C(qla QI’ Ul)
respectively, which are uncertain with parameter
vectors o7 and o, . These are expressed as follows:

comprise,

dy d
Lx%>=[ ! ‘2},
d21 d22
C@q)_‘ﬂﬂﬁﬁm¢®f”'mﬁﬁﬁm¢®@m+¢%)
LYt/ —
myhl, singYg? 0

Ly +mol)gsing® +myl,pgsin(g'? +¢')
G(q)=

. 4
myl,gsin(g® +4Y)

b

|
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J 0
J= s
0 J,
P K P E T T | R O
O K2 0 Kz 0 K2 O 62
where

ajy =myhl.,,
=m, (12 +1> 2 +1 +1
ajp =my(lf +15)+mly +h +1;,

2
ay =mli +1,

dyy =24y, cos(g ) +ap, (53)
dyy =ay cos(gV) + ary,

dy = s

dyy =dap.

The inertia matrix D(q;) entries are bounded with

|di1| < 241 +ayy, |dip| < @y +ax, |dy| < ay - (54)

G(g) =g g,)" entries are bounded with
lei] < g1+ 8125 |22 < g215
gn=mly+mh)g, ga=mln-g, (55)
&1~ 812

We consider the system with constant uncertainty. Let
qf,, qj, be desired positions of links which are set
by different values in this example. We want links to
be placed to the desired position with keeping joint
angle errors very close to 0. Let cjz =q2 —qu, and

G =¢* —g5. The boundedness function p is

computed by
1
i = (ol + 3%, (56)
where

~(2)2 (N2 ~(4)2 ~
pri =ty + 113D + 151§D + 105D + 151G

~(2)2 2(2)2 ~(4)2 =(4)2
ot =tz + i 415547 + 140§D 415,72,

(52

57
and
K 1
m=g1+8n +TI+K16131 +z(2011 +ap)

1
+z(“11 +ap)s,

Q1511 N1521

_ 1
s 531=Qay +app)s + "

t21 :Kl +

1511, 91821
—+____

ty= a5, ts1= (@ +ax)sy + 5 5

K 4 1 1
oy =812 +jf+qud +z(a11 +axn)s + %

A 1811 1511

, Iy =(a +ayp)s; + 5

1=
tp =Ky, ts3=axnsy. (58)

Now, we have the following control:

=K (=K gy — K@i + p — BilG + S$id)s

59
- L . .2 4 T( )
=9 —%a, 9= ~%Da> QId—[qd qdq | >

where

b =[p11 P12i|T s

__#Lpla lf||#11||>51a
el
P = o
_sm(z—gl)pl, if ||| < &1
p (60)
—_E‘Pla lfuﬂu“>81,
] el
2= . T
_sm(z—gl)/?p if |eu2|| < &1
1 =G +8,d)py,
o =GP +83,8)p.
We have robust control #:
u=-K,(q; )~ K,2(g2 =)+ pa,
H .
_——p 2 lf >€ b
Pl (61)

Py = p
_8—2P2> if 1] < &,
2

My =(qy —t +S5(q0 —u))pas
¢ =—Jiiy — KZ3 + KZ, — Kuy + JS,Zs,
la]|< o -

For experiments, we choose m; =2.8kg, m, =0.3kg
[, =0.25m, /., =0.2m, I, =0.Im(known parameters)
and K, =3.0kgfm, K, =1.5kgfm, 7; =0.112kgm’,
T, =0.003kgm’, J,=J,=0.001kgm’, g = 9.8m/s’, ki
= kpa1 = 20, kpi2 = Koo = 10, ki1 =kyo1 = 10, kyin=kvo
=5 sp=8p=1, $51=8=1, § =5, and & =5.
S, =5 is chosen according to the selection of f

based on above parameters. The control parameters
including PID gains and other things as shown above
are not simply selected ad hoc but chosen after several
tunings; through several experiments. Fig. 3 shows the
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Fig. 3. Response history of motor and link angles with
PID control (hard torsion case: around 1.2
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Fig. 4. Response history of motor and link angles with
robust control (hard torsion case: around 1.2
kgf-cm).
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Fig. 6. Response history of motor and link angles
with robust control (soft torsion case: around
0.2 kgf-cm).

experimental result under PID control with installing a
stiff torsional spring at joints, which is close to a rigid
joint manipulator. As we expect, the control
performance is desirable in terms of small steady state
error and fast rising time. Of course, the PID gains are
well tuned by several trials. The PID gains for each
link are assigned as P gain=250, D gain=10, I gain=20
for the link 1, and P gain=200, D gain= 20, 1 gain=30
for the link 2. Compared with the robust control (Fig.
4}, the performance does not have much discrepancy
between them. The vertical axis for each figure shows
number of the encoder pulses for the joint angle, and
the encoder has 10,000 pulses for one rotation. Next,
when a soft torsional stiffness is installed at joints, the
previous setting does not guarantee nice quality. The
PID control makes the links and motors fluctuate at
after certain time, continuously fluctuating (Fig. 5).
The behavior explains how instability arises in a
flexible joint manipulator with a wrongly designed
controller.

However, this PID control does not show any
robustness, which is set by setting appropriate gains
for any system. On the other hand, robust control for
step input is employed, which shows a desirable
outcome. The gains selection is based on the
appropriate tuning in the real experiments. Fig. 6
shows the step response under the proposed robust
control, which shows enhanced performance
compared with the previous control schemes.

Next, consider the control performance for given
sinusoidal references as the joint stiffness is weak
enough. Then there are big difference between PID
and robust controls (Figs. 7 and 8). The robustness
under the proposed controller is verified viewing the
results of soft joint and hard joint, which is
implicative that the control overcomes the parameter
uncertainty in a desirable fashion.
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Fig. 7. Response history of motor and link angles with
PID control (soft torsion case: around 0.2

kgf-cm, period: 3sec sinusoidal reference).
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Fig. 8. Response history of motor and link angles with
robust control (soft torsion case: around 0.2
kgf-cm, period: 3 sec sinusoidal reference).

In a summary, when the stiffness between motor
and link is small and soft, whether the reference input
is given by a step or a sinusoidal form, the system
performance is not satisfactory due to a large steady
state error and fluctuation, which implies the motor
motion does not much deliver to the link due to a
large coupling between those. On the other hand, with
the use of the robust control, an improved system
performance with respect to smaller settling time and
steady state error is achieved in comparing with the
PID control.

7. CONCLUSION

A framework under the design of robust control for
flexible joint manipulators which are uncertain and
mismatched is developed. After dividing the total
system into two subsystems, we first implant a virtual
(or implanted) control for the first subsystem. Next,
we introduce a state transformation via virtual control.
Based on this transformed system a control scheme is

designed. This approach leads to overcoming the
difficulty of control design in mismatched system.
The control renders practical stability for the
transformed system and later the practical stability for
the original system is also investigated. The control is
applicable to both the constant uncertainty and time-
varying uncertainty. Furthermore, the size of the
uniform ultimate boundedness ball and uniform
stability ball can be made arbitrary small for the
transformed system and for the original system.

The transformation is only based on the possible
bound of uncertainty. Actually, this scheme shows a
major development in controlling flexible joint
manipulators with mismatched uncertainty and
nonlinearity. Several experiments for two- link
flexible joint manipulator are carried out to verify the
control performance under the proposed robust control
The robust control possesses most enhanced control
performance compared with the others.
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