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Error Analysis of 3-Dimensional GPS Attitude Determination System

Chansik Park, Deuk Jae Cho, Eun Jong Cha, Dong-Hwan Hwang, and Sang Jeong Lee

Abstract: In this paper, the error investigation of a 3-dimensional GPS attitude determination
system using the error covariance analysis is given. New efficient formulas for computing the
Euler Angle Dilution of Precision (EADOP) are also derived. The formulas are easy to compute
and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline
configuration and the receiver noise. Using the formula, the accuracy of the Euler angle can be
analytically predicted without the use of computer simulations. Applications to some
configurations reveal the effectiveness of the proposed method.
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1. INTRODUCTION

In general the GPS receiver provides position,
velocity and time information of a vehicle. The
attitude can also be determined by measuring the
carrier phase from multiple antennas. Due to the
bounded characteristics of the attitude error, much
attention has been paid to the real-time attitude
determination technique [1-4].

To evaluate the accuracy of the obtained
positioning and timing result, the expected statistical
error magnification factor known as Geometric
Dilution of Positioning (GDOP) is generally used.
GDOP is defined under the assumption of equal
pseudorange measurement error variances in each
channel, and represent the geometric contribution of
observation errors to the obtained positioning and
timing accuracy [5]. GDOP is an indicator of
positioning and timing error ‘per unit of measurement
noise’ covariance [6]. GDOP is composed of spatial
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and time-related components. The spatial component
is called PDOP (Position DOP) and the time-related
component is called TDOP (Time DOP). PDOP is
further divided into horizontal and vertical factors,
HDOP (Horizontal DOP) and VDOP (Vertical DOP).

In the same manner, to predict and analyze the
attitude errors, several parameters analogous to the
PDOP, HDOP and TDOP concept for the position and
time have been defined and introduced. In recent
years, Yoon and Lundberg [1] defined a new DOP
called the Euler angle dilution of precision (EADOP)
for the 3 dimensional attitude determination system.
Their derivation is an extension of ADOP (Attitude
DOP) in [2] and EADOP includes roll, pitch and yaw
elements. The square sum of the elements of EADOP
is the same as the square of ADOP. The ADOP and
EADOP are efficient tools to attitude error analysis
and can be used as a metric of determining a better
algorithm [7]. However, ADOP and EADOP do not
explicitly show the relations among the attitude error,
the nominal attitude of the vehicle and the baseline
configuration, so that the computer simulations are
required to analyze their affects. The errors in the 2
dimensional attitude determination systems are
analyzed in [4] using error covariance analysis and it
clearly shows the relations between the attitude error
and the nominal attitude, the baseline configuration
and the receiver noise.

In this paper, the attitude error covariance matrix of
a 3-dimensional attitude determination system is
derived. Adding a reasonable assumption to this
matrix, new formulas of the EADOP are derived, in
which the attitude error is represented as a function of
the nominal attitude of a vehicle, the baseline
configuration and the receiver noise. Using the
formulas, the accuracy of the Euler angle estimate can
be predicted analytically while it is predicted through
simulations in the previous work [1].
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2. ATTITUDE ERRORS IN 3-DIMENSIONAL
GPS ATTITUDE DETERMINATION SYSTEM

The single difference carrier phase measurement is
generally used in attitude determination using the GPS
signal when a dedicated special purpose receiver is
used [1,2]. To determine the 3-dimensional attitude, it
is necessary to have m (= 4) visible GPS satellites and
m, (> 2) baselines or equivalently m,+1 antennas. The
carrier phase measurement at the antenna i/ can be
modeled as

®$”}T, p =| Al pf’”]Ta

and ¢B; denote the carrier phase measurement vector,

where ©; :[d)}-

the distance vector between the antenna i and the m
visible satellites, and the receiver clock bias vector,

respectively, w; =[w} U

T
; } is the measurement

noise with zero mean and variance of o2/ ms L 1S

the m by m identity matrix and o? is the variance of
the measurement noise. It is assumed that integer

T
ambiguities N, =[N,-l Nim} have already been

fixed using an adequate method [8,9]. In this paper, to
simplify the analysis it is assumed that the multipath
is minimized by appropriate methods such as choke
ring, MEDLL, MET and so on [8]. Other common
errors such as ionosphere and troposphere delay are
ignored because the baseline length in the attitude
determination system is usually very short, as shown
in Fig. 1.

The linearized single difference observation
equation at the reference antenna i and the antenna j
can be written as

I = Gir]‘-Z + Wy )

where [; =®; —AN; - pyg, [;=®; —AN; = pj, I

Fig. 1. The satellite-antenna geometry and the defini-
tion of attitude.
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vector between the reference antenna i and the m

visible satellites. G; =g ... gm]T is the matrix

composed of the line of sight vectors g; between the

satellite k& (=1, ..., m) and the antenna i, r{ is the

J
baseline vector from antenna i to J.

The single differenced measurement noise wj; =

mT
;W ; w;] has zero mean and

variance of o2SS” where S is the single difference
operator [4,9] defined by

1 =10 0 0 0
00 1 =1 = 0 0

Sz::::'.:' (3)
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Using the fact SS” =27, the variance of w;;

i

me

becomes 20'21m .

Note that the receiver clock bias vector disappears
in (2) by the single difference operation. It is assumed
that both receivers i and j are driven by a common
clock as in [1] and [2] and the line bias between the
two receivers is removed.

The receiver clock bias vector can be removed
when the double difference operation is taken to the
carrier phase measurement [4,9]. In this case, it is
possible to have an attitude determination system
using low cost off-the-shelf GPS receivers. The single
difference observation equation without the receiver
clock bias is adopted in this paper in order to compare
the result of [1] and [2].

The baseline vector rf inthe ECEF (Earth Centered
Earth Fixed) coordinate frame can be estimated using
the least squares method and is given by

rf = (G G)™' Gl )

with the covariance matrix
cov(rf) =207 (G] G)". (5)

The reference frame in which the attitude of the
vehicle is specified is usually a local level frame such
as the NED (North-East-Down) coordinate frame.
Therefore, the baseline vector in the ECEF frame
should be transformed to the NED frame. Using the

matrix C. of the coordinate transformation from the
ECEF frame to the NED frame, the baseline vector

r}’ in the NED frame can be easily obtained as

i =G, Q)
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whose covariance matrix is given by

0, =cov(r]) =20>CJ (G} G) ' C,. )
Denote rJI-’ as the baseline vector between the
reference antennas i and the antenna j in the body
frame. Then rf and r}’ have the relation

Rb =ClRr", (8)
clcy clsy -sé

CS: —cgsy +sgslcy cocy +sgslsy sl |,
sgsy +cgsOcy  —sgcy +cgsfsy cgcl
®
where R® =[r1b r,f’,a] , R” =[r1” r,:,’a] , C

and s mean cos and sin respectively.
¢, 6, and y are the roll,

respectively. The roll axis points in the forward
direction, the yaw axis points in the downward
direction and the pitch axis completes the right-
handed coordinate system.

As is well known, the coordinate transformation

pitch and yaw,

matrix Cs is orthogonal and since the positions of

the antennas are known when installed, R?is known a
piori. Using (6), R" is calculated from the measured

m,. Then C,[;

by applying the least squares method to (8) [2,10].
Therefore, it can be seen that the attitude error is
represented by the measurement error in R”.

Now, we will derive the attitude error equation. Let

vector, ri,ji=1,--, can be determined
b

where ES and 0 Cf,
From (11) and (12), we obtain the skew symmetric
matrix in (13).

It is noted that R” can be represented as

are in (11) and (12) respectively.

R"=R"+65R", (14)

where R" is the value that gives the true attitude
¢, 0, and vy, ie, R®=CER"; SR" is the
error resulting from the measurement noise. Using (8),
(10) and the relation R” =CPR",
obtained that

it can be easily

CPSR" +5CPR™ =0. (15)

By multiplying (_71:’ to both sides of (15) and
rearranging them, we obtain

SR" =-CJ5CPR" =-0"R". (16)
The j-th column vector of SR" is given by
n _ X—H _ (=1 \X
or/ =-0 rj" =(r;") om, (17

where (7/')" is the skew symmetric matrix of the

T
: =N _|=n —n —n :
baseline vector = [rNj FEj rDj} and given by

—n —n
0 _rDj rEj

F'Y =| 7 0 -7y (18)
d=gy+5p, 0=0,+050, and yw=y,+5y. To a J =i N
— —n
first-order approximation, we have 7 E7 TN 0
ct=ct+sct, (10)  and
cos O cos ¥ cos & sin —sin g
Es _ | —cos @y siny + sin g sin &, cosy €0$ P c0s iy + sin ¢y sin & sin y sin ¢ cos &, (11)
sin g sin y) + cos ¢ sin & cos —sin ¢y cosy + cosdy sin & sinyy  cos gy cos b
i —(siny cos )60 — (cos Oy sinyg)Sy —~(sm Oy sin /)50 + (cos b cos /. 8y i —(cosf)00 )
(cos ¢0 sin 490 cosyy +sin ¢0 sin ¥o )§¢ (cos ¢0 sin 90 siny —sin ¢0 cos (//0 )5¢
i (cosdy cosby)og
+(sin @y cos G, cos )6 +< sin ¢y cos &y siny )66 ‘ _(sing, 0,)50
sin ¢ sin
—(cos ¢0 cosyg + sm ¢0 sin 90 sm Vo )61// +< sin ¢0 sm 6?0 cosy/g —cos ¢0 sm W )51// 0 0
(cos ¢0 sin l//o —sin ¢0 sin 6’0 cos l//O )§¢ i —1 cos ¢0 cos 1,1/0 +sin ¢0 sin 00 siny, )§¢
b i —(sin @, cos by) ¢
6C, =| +(cos g cosb, cosiyy)od +1 cos ¢ cos & siny )50 g ~(cos, 0,150 ,(12)
CoS @ sin
+(sm @o cosyy — cosdy sinfy siny )5;1/ +{cos @ sin G cosy + sin g, siny, )5:// 0 0
0 ~sin 6,6¢ + oy —cos @, siny 0¢ — cos (//050
e = E:é‘C: = sin 8,6¢ ~ oy 0 cos f, cosy O¢ — siny 50 (13)

cos 8, siny O + cosy 60

—cos @, cosy 5p + siny, 50 0
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[ —cos @, cosyy o + sin w60
on =| —cos b, sinyy0¢ — cos (o0 (19)
L sin 6,09 — Sy
[—cos@ycosy, siny, O |[5¢p
=| —cosfysiny, ~cosy, O || 56 |=Tok.
| sing, 0 ~1|| oy

Using (17) and (19), we obtain
5}’1” (Fln )X
S P |ToE . (20)

s | |Gy

Applying the weighted least squares method [11],
the attitude error can be estimated as

-1
5$ - T—l tzﬂ ((r—,jn)x Q;I (an)x)} l:za ((FJn)x Q;lé‘}";’)}
j=l j=1

21)

with the covariance matrix
ma _1
coV(6€) =T~ [—Z«Ff o, 7Y )} 7. (22)
=1

From (7), it is unquestionable that all components
of r;’ are correlated with each other. For simplicity,

however, we will follow the common assumption that
all the components of r;’ are uncorrelated with each

other and have the same variance [1,3], that is,
Q, =201, (23)

where [; is the 3 by 3 identity matrix and the
variance o of an undifferenced carrier phase

measurement is amplified to 202 by the single
difference operation. Then, (22) becomes

- -1
cov(3€) =20°T"! —Z“(@")*@")X)} T (4)
j=1

- -1
Mg
j=1

Because of assumption (23), the influence of both
the geometry and the number of visible GPS satellites
are not seen in (24). Since the length of the baseline

vectors, bj j=1L...,m,, are constant under the

coordinate transformation, (24) becomes

r -1
cov(6€) =20°T! fj(b}g—?,”(@”)T )} T (25)
Lj=t

[ m,

-1
=20°T7"| D (b7 14 —ffrj-’(rf)Té,l,’)} Yl
Lj=1

The definition of the ADOP (Attitude DOP) in {2]
and the EADOP in [1] can be derived from (25) by
letting ¢, =6y =y, =0, ie, T=-I;. Equation
(25) gives an explicit relationship among the attitude
error, the baseline configuration, the nominal attitude

of the vehicle and the receiver noise while the ADOP
and the EADOP does not.

3. APPLICATIONS

Generally 2 or 3 baselines (3 or 4 antennas) are
used in the GPS attitude determination application.
The configurations of baselines are dependent on
many factors like the size and shape of the vehicle.
However, the 3 configurations represented in Fig. 2
are the most canonical forms when the use of the GPS
attitude determination system is considered. Similarly,
error analysis of another configuration can be easily
done.

3.1. Optimal 3-baselines configuration
Let the baseline vectors in the body frame be

=b[1oo], #=b010], #=b[001].@26)

Then, (25) becomes

2
cov(S5E) = U—zT_lT_T
b

(6,0,0) 0.0,0)

(@ (®) ©

Fig. 2. Typical baseline configurations: (a) 3 orthogonal
baselines with equivalent lengths, (b) 2
orthogonal baselines with equivalent lengths on
a horizontal plane, (¢) 2 orthogonal baselines
with equivalent lengths on a vertical plane.
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Equation (28) shows that the Euler angle errors can
be reduced by increasing baseline length or reducing
receiver noise. Furthermore, (27) implies that the
pitch error is not affected by the nominal attitude of
the vehicle while the roll and the yaw error increase as
the vehicle inclines. The roll and the yaw error will

diverge when 6, =+90°, which requires caution in

the airborne applications. This baseline configuration
is known to be optimal because it has the minimum
ADOP [3];

ADOP = 4/¢DOP? + GDOP? + yy DOP?

! - \J2+cos? 6, (28)

" beos b
:{3—’ if90=0.

3.2. Horizontal 2-baselines configuration
Consider the baseline configuration used in [1], that
is,

=61 0 o], Pf=b[0 1 0. 29)
Then, we have
5 _0O° -1 ny 4T ~b\p=T
cov(5§)=b—2T @-chlchrT, (30)

where 13=[0 0 1]". The EADOP can be obtained
using

2-cos’ ¢, sin? &y

cos® Gy(2 —sin® ¢y) |. 31)

2—cos’ &

2

. £ o
diag[cov(o)] = 5
b cos” 6,

Equation (32) represents the affect of the nominal
attitude of the vehicle, baseline length and receiver
noise. For a stationary vehicle with ¢, =6, =y, =0,

EADOP becomes #DOP =+2c/b, 6DOP=+20/b
and wDOP =c/b, which implies that the accuracy
of the yaw angle is better than that of roll and pitch.
This is coincident with the simulation results in [1].
However, it should be noted that the factors that
influence the smaller wDOP than ¢DOP and

@DOP are not only the satellites geometry but also
the baseline configuration. Yoon and Lundberg’s
analysis which states that due to satellite geometry,
HDOP is usually smaller than VDOP and that it gives
smaller wDOP, is insufficient. In this configuration,
two baselines are placed on a horizontal plane and one

baseline is used to obtain roll and yaw angle while the
other baseline is used to obtain pitch and yaw angle.

Therefore, the accuracy of yaw is superior to the roll

and pitch with the factor of V2.
In this configuration, we have ADOP as

ADOP = \/Z'i_ cos’ 6,(2- sin® @) - cos? % (Sin2 6y +1)
bcosd,

:%’ if 6y =9y =0, (32)

which is larger than the optimal value in (28). It
implies that the accuracy of attitude estimates
improves with the number of baselines.

3.3. Vertical 2-baselines configuration

Consider the baseline configuration oriented in a
north and downward direction

w=b1 0 o], #=b[0 0 1], (33)
we have

2 —sin? gy sin* 6,

2
diag[cov(88)] = ————| cos? 6, (2~ cos” ¢p) | (34)
b” cos” g, .9
2 —sin” ¢

and

J4+cos? B (2 — cos? gy ) —sin® gy (sin® G +1)
ADOP =

bcosb, :
5o

Equation (35) represents the affect of the nominal
attitude of the vehicle, baseline length and receiver

noise. For a stationary vehicle with ¢, =6, =y, =0,
EADOP becomes ¢DOP =+/2¢/b, 6DOP =o/b and

wDOP = \/—Z_O'/b, which implies that the accuracy of

pitch angle is better than that of roll and yaw.

Equations (28), (32) and (35) clearly show the
impacts of the antenna configuration and the nominal
attitude of the vehicle on the attitude estimates. It can
be easily applied to predict and analyze the attitude
error. However, note that the influence of the
geometry and the number of visible satellites is not
included because of assumption (23). In order to
obtain more rigorous results that consider all
parameters, (22) should be used.

4. CONCLUDING REMARKS

Error analysis of 3 dimensional GPS attitude
determination is given in this paper. An analytic
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expression of the attitude error covariance is derived
for the rigorous analysis. The new EADOP
expressions, which can be a simple but efficient
analysis tool for the attitude error analysis, are also
derived. Using these expressions the error can be
analyzed without computer simulations because they
explicitly represent the attitude error as the function of
the nominal attitude of the vehicle, the baseline
configuration and the receiver noise. The applications
to some baseline configurations demonstrate the
effectiveness of the derived expressions. These results
can be applied to predict and analyze the performance
of the GNSS attitude determination system.
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