Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young (School of Mechanical Engineering, Kyungpook National University)
  • Published : 2006.08.01

Abstract

Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.

Keywords

References

  1. F. Wang and V. Balkrishnan, 'Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems,' IEEE Trans. on Automatic Control, vol. 47, no. 5, pp. 720- 734, 2002 https://doi.org/10.1109/TAC.2002.1000267
  2. T. Wada and K. Osuka, 'Gain scheduled control of nonlinear systems based on the linear-modelsets identification method Wada,' Proc. of the 36th IEEE Conf. on Decision and Control, pp. 412-417, 1997
  3. K. S. Narendra and J. Balakrishnan, 'Adaptive control using multiple models,' IEEE Trans. on Automatic Control, vol. 42, no. 2, pp. 171-187, 1997 https://doi.org/10.1109/9.554398
  4. C. Lee and J. Lee, 'Adaptive control for uncertain nonlinear systems based on multiple neural networks,' IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 325- 333, 2004
  5. S. S. Sastry and A. Isidori, 'Adaptive control of linearization systems,' IEEE Trans. on Automatic Control, vol. 34, pp. 1123-1131, 1989 https://doi.org/10.1109/9.40741
  6. K. Funahashi, 'On the approximate realization of continuous mapping by neural networks,' Neural Networks, vol. 2, no. 3, pp. 359-366, 1989 https://doi.org/10.1016/0893-6080(89)90020-8
  7. J. L. Castro, 'Fuzzy logical controllers are universal approximators,' IEEE Trans. on System, Man, and Cybernetics, vol. 25, pp. 629- 635, 1995 https://doi.org/10.1109/21.370193
  8. F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems, London, Taylor and Francis, U.K., 1999
  9. J. S. Albus, 'A new approach to manipulator control: The cerebella model articulation controller (CMAC),' Trans. ASME, J. Dyna. Syst., Measurement, Contr., vol. 63, no. 3, pp. 220-227, 1975
  10. R. M. Sanner and J.-J. E. Slotine, 'Gaussian networks for direct adaptive control,' IEEE Trans. on Neural Networks, vol. 3, pp. 837-863, 1992 https://doi.org/10.1109/72.165588
  11. R. Carelli, E. F. Camacho, and D. Patino, 'A neural network based feedforward adaptive controller for robot,' IEEE Trans. on System, Man, and Cybernetics, vol. 25, pp. 1281-1288, 1995 https://doi.org/10.1109/21.400506
  12. G. A. Rovithakis and M. A. Christodulou, 'Neural adaptive regulation of unknown nonlinear dynamical systems,' IEEE Trans. on System, Man, and Cybernetics, Part B, vol. 27, pp. 810-822, 1997 https://doi.org/10.1109/3477.623234
  13. Y. G. Leu, T. T. Lee, and W. Y. Wang, 'Observerbased adaptive fuzzy neural control for unknown nonlinear dynamical systems,' IEEE Trans. on System, Man, and Cybernetics, vol. 29, pp. 583-591, 1999 https://doi.org/10.1109/3477.790441
  14. S. Seshagiri and H. K. Khalil, 'Output feedback control of nonlinear systems using RBF neural networks,' IEEE Trans. on Neural Networks, vol. 11, pp. 69-79, 2000 https://doi.org/10.1109/72.822511
  15. F. Sun, Z. Sun, and P.-Y. Woo, 'Neural network based adaptive controller design of robotic manipulators with an observer,' IEEE Trans. on Neural Networks, vol. 12, pp. 54-67, 2001 https://doi.org/10.1109/72.896796
  16. L. X. Wang, 'Stable adaptive fuzzy control of nonlinear systems,' IEEE Trans. on Fuzzy Systems, vol. 1, pp. 146-155, 1993 https://doi.org/10.1109/91.227383
  17. J. T. Spooner and K. M. Passino, 'Stable adaptive control using fuzzy systems and neural networks,' IEEE Trans. on Fuzzy Systems, vol. 4, pp. 339-359, 1996 https://doi.org/10.1109/91.531775
  18. M. C. M. Teixeira and S. H. Zak, 'Stabilizing controller design for uncertain nonlinear systems using fuzzy model,' IEEE Trans. on Fuzzy Systems, vol. 7, pp. 133-142, 1999 https://doi.org/10.1109/91.755395
  19. C.-H. Wang, H.-L. Liu, and T.-C. Lin, 'Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,' IEEE Trans. on Fuzzy Systems, vol. 10, pp. 39-49, 2002 https://doi.org/10.1109/91.983277
  20. M. S. Branicky, 'Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,' IEEE Trans. on Automatic Control, vol. 43, no. 4, pp. 475-482, 1998 https://doi.org/10.1109/9.664150
  21. J. Kalkkuhl, T. A. Johansen, and J. Ludemann, 'Improved transient performance of nonlinear adaptive backstepping using estimator resetting based on multiple models,' IEEE Trans. on Automatic Control, vol. 47, no. 1, pp. 136-140, 2002 https://doi.org/10.1109/9.981733
  22. E. Bakker, H. B. Pacejka, and L. Linder, 'A new tire model with application in vehicle dynamics studies,' SAE, 890087, 1989
  23. G. C. Goodwin and D. Q. Mayne, 'A parameter estimation perspective of continuous time model reference adaptive control,' Automatica, vol. 23, pp. 57-70, 1987 https://doi.org/10.1016/0005-1098(87)90118-X
  24. D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984
  25. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice- Hall, Englewood Cliffs, NJ, 1989
  26. K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989