운모와 장석의 실내 풍화실험 및 광물학적 특성

Laboratory Weathering Experiment on Mica and Feldspar and Their Mineralogical Characteristics

  • 발행 : 2006.06.01

초록

암석은 지표환경에 노출되면 오랜 세월동안 여러 요인에 의해 물리적 화학적 품화과정을 겪는다. 암석을 구성하는 광물 중 장석과 운모는 다른 광물들에 비해 가장 먼저 풍화되는 광물들이다. 자연계 풍화 화강암내에 존재하는 풍화 광물과 유사한 풍화 광물을 재현하기 위해 실내에서 신선한 광물과 산성용액과의 반응실험을 실시하였다. 흑운모의 경우, 낮은 pH조건에서 광물 용해 및 표면구조 파괴 현상이 초기에 시작되어 점차 진행되었고 사장석에서는 표면 침상 용해구조 발달 및 다량의 Al 성분의 침전물 형성이 두드러졌다. 강산조건에서는 모든 광물의 용해가 심화되었고 표면 용해구조가 뚜렷이 나타났다. 야외에서 관찰되는 광물표면의 용식각(etch pit) 및 표면 용해구조가 본 실험에서도 비슷하게 관찰되었고 광물 용해 및 풍화 조직이 광물 고유의 특성에 따라 발달됨을 알 수 있었다.

When rocks are exposed to the near surface environment, they are broken down due to several factors such as physical and chemical weathering during the geologic time. The feldspar and mica, which are the main rock-forming minerals, are easily broken down relative to other minerals. In order to reproduce some weathered minerals similar to the ones exist in natural weathered granite, there was an experimental interaction between fresh minerals and acidic solution. In low pH condition, biotite initially dissolved and its surface structure broke down, whereas plagioclase dissolved and had a needle-shaped dissolved morphology with some precipitates composed of Al element. The minerals were deeply dissolved in a strong acid condition, showing the prominent dissolved structure. Some etch pits and dissolved textures developed on the natural mineral surfaces are similarly found in our experiment, suggesting the development of mineral dissolution and weathering texture by the influence of the mineral's intrinsic nature.

키워드

참고문헌

  1. 원종관, 이하영, 지정만, 박용안, 김정환, 김정식 (1995) 지질학원론. 우성, 서울, 662p
  2. 이석훈, 김수진 (2000) 유구지역 화강암질 편마암의 풍화작용에 의한 광물 조성의 변화. 한국광물학회지, 13, 121-137
  3. 정기영 (1998) 팔공산 화강암내 흑운모의 풍화과정에서 생성되는 고령토광물들의 광물학적 특성 및 생성환경. 한국광물학회지, 11, 97- 105
  4. 정기영, 이병윤 (1998) 팔공산 화강암내 사장석의 풍화. 지질학회지, 34, 44-57
  5. Aagaard, P. and Helgeson, H.C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations. Am. J. Sci., 282, 237-285 https://doi.org/10.2475/ajs.282.3.237
  6. Anand, R.R., Gilkes, R.J., Armitage, T. and Hillyer, J. (1985) The influence of microenvironment on feldspar weathering in lateritic saprolite. Clays Clay Miner., 33, 31-46 https://doi.org/10.1346/CCMN.1985.0330104
  7. Banfield, J.F. and Eggleton, R.A. (1988) Transmission electron microscope study of biotite weathering. Clays Clay Miner., 36, 47-60 https://doi.org/10.1346/CCMN.1988.0360107
  8. Banfield, J.F. and Eggleton, R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays Clay Miner., 38, 77-89 https://doi.org/10.1346/CCMN.1990.0380111
  9. Berner, R.A., Sjoberg, E.L., Velbel, M.A. and Krom, M.D. (1980) Dissolution of pyroxenes and amphiboles during weathering. Science, 207, 1205-1206 https://doi.org/10.1126/science.207.4436.1205
  10. Berner, R.A. and Schott, J. (1982) Mechanism of pyroxene and amphibole weathering: II. Observations of soil grains. Am. J. Sci., 282, 1214-1241 https://doi.org/10.2475/ajs.282.8.1214
  11. Casey, W.H., Westrich, H.R., Massis, T., Banfield, J.F. and Arnold, G.W. (1989) The surface of labradorite feldspar after acid hydrolysis. Chem. Geology, 78, 205-218 https://doi.org/10.1016/0009-2541(89)90058-2
  12. Churchman, G.J. and Gilkes, R.J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles. Clay Miner., 24, 579-590 https://doi.org/10.1180/claymin.1989.024.4.02
  13. Eswaran, H. and Bin, W.C. (1978) A study of a deep weathering profile on granite in peninsula Malaysia: III. Alteration of feldspars. Soil Sci. Soc. Amer. J., 42, 154-158 https://doi.org/10.2136/sssaj1978.03615995004200010034x
  14. Gilkes, R.J. and Suddhiprakarn, A. (1979) Biotite alteration in deeply weathered granite. I. Morphological, mineralogical, and chemical properties. Clays Clay Miner., 27, 349-360 https://doi.org/10.1346/CCMN.1979.0270505
  15. Harris, W.G., Zelazny, L.W., Baker, J.C. and Martens, D.C. (1985) Biotite kaolinization in Virginia Piedmont soils: I. Extent, profile trends, and grain morphological effect. Soil Sci. Soc. Am. J., 49, 1290-1297 https://doi.org/10.2136/sssaj1985.03615995004900050044x
  16. Jeong, G.Y. and Kim, S.J. (1993) Boxwork fabric of halloysite-rich kaolin formed by weathering of anorthosite in the Sancheong area, Korea. Clays Clay Miner., 41, 56-65 https://doi.org/10.1346/CCMN.1993.0410106
  17. Jeong, G.Y. (1998) Vermicular kaolinite epitactic on primary phyllosilicates in the weathering profiles of anorthosite. Clays Clay Miner., 46, 509-520 https://doi.org/10.1346/CCMN.1998.0460504
  18. Knauss, K.G. and Wolery, T. (1989) Muscovite dissolution kinetics as a function of pH and time at $70^{\circ}C$. Geochim. Cosmochim. Acta, 53, 1493-1501 https://doi.org/10.1016/0016-7037(89)90232-9
  19. Moon, H.S., Song, Y.G. and Lee, S.Y. (1994) Supergene vermiculitization of phlogopite and biotite in ultramafic and mafic rocks, central Korea. Clays Clay Miner., 42, 259-268 https://doi.org/10.1346/CCMN.1994.0420304
  20. Muir, I.J. and Nesbitt, H.W. (1992) Controls on differential leaching of calcium and aluminum from labradorite in dilute electrolyte solutions. Geochim. Cosmochim. Acta, 56, 3979-3985 https://doi.org/10.1016/0016-7037(92)90011-7
  21. Pavich, M.J. (1986) Process and rates of saprolite production and erosion on a foliated granitic rock of the Virginia Piedmont. In: Coleman, S.M., and Dethier, D.P., (Eds.) Rates of Chemical Weathering of Rocks and Minerals. Academic Press Inc., 551-590
  22. Petit, J.C., Mea, G.D., Dran, J.C., Schott, J. and Berner, R.A. (1987) Mechanism of diopside dissolution from hydrogen depth profiling. Nature, 325, 705-707 https://doi.org/10.1038/325705a0
  23. Proust, D. and Veld, B. (1978) Beidellite crystallization from plagioclase and amphibole precursors. Local and long-range equilibrium during weathering. Clay Miner., 13, 199-209 https://doi.org/10.1180/claymin.1978.013.2.07
  24. Rebertus, R.A., Weed, S.B. and Buol, S.W. (1986) Transmission of biotite to kaolinite during saprolite-soil weathering. Soil Sci. Soc. Am. J., 50, 810-819 https://doi.org/10.2136/sssaj1986.03615995005000030049x
  25. Samotoin, N.D., Norikov, V.M. and Magazina, L.O. (1987) Paragenesis of secondary clays in a bauxite-bearing granite weathering zone. Inter. Geol. Rev. V. H. Winston & Sons, 1215-1227
  26. Schott, J., Berner, R.A., and Sjoberg, E.L. (1981) Mechanism of pyroxene and amphibole weathering - I. Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta, 45, 2123-2135 https://doi.org/10.1016/0016-7037(81)90065-X
  27. Wilson, M.J. (1970) A study of weathering in a soil derived from a biotite-hornblende rock. I. Weathering of biotite. Clay Miner., 8, 291-303 https://doi.org/10.1180/claymin.1970.008.3.07