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Nonlinear Dynamic Analysis of Fiber Movement
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Abstract: This paper adopts nonlinear vibration method to analyze the fluctuation process of fiber movement. Based on
Hamilton Principle, this paper establishes differential equation of fiber axial direction movement. Using variable-separating
method, this paper separates time variable from space variable. By using the disperse movement equation of Galerkin
method, this paper also discusses stable region of transition curve and points out those influencing factor and variation trend

of fiber vibration.
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Introduction

During the pulling procedure in post processing of chemical
fiber, fiber axial direction is a basic form of movement. This
movement is analogous to the chord movement. Due to its
high flexibility, light mass and low damp, fiber movement
can easily evolve into wide range vibration. It is well known
that using the method of linear dynamics to explain correctly
fiber jumping phenomenon is very difficult [1-3]. However,
this paper presents a study of fiber movement process by using
non-linear method; our research results provide an approach
for process engineers to have better understanding of the
regular pattern of fiber movement, to develop better process
specifications and to enhance product quality.

Basic Fiber Model

In order to simplify the study, we made the following basic
premises:
1. Take no account of flexural rigidity, torsional rigidity
and shearing rigidity.
2. Cross-section, which was vertical to fiber axes before
deformation, will still be vertical to fiber axes after

deformation.
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Figure 1. Model of short snippet fiber.
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3. Regard gravity sag of fiber as a parabola.
4. Assume deformation constitutive relation of fiber to obey
Hookes law and the force at each point is equal.

In Figure 1, we define F and G as the two endpoints of a
infinitesimal section of the fiber which have not deformed,
and define F” and G’ as the two end points of a infinitesimal
section of the fiber which have deformed.

Displacement of point F can be expressed as:

Ap = u(x, )i+w(x, t)k 4
Displacement of point G can be written as follow:
ou . Ow
A :( +—d)+( + X 2
G U > x|i+|w o x 2

According to Figure 1, it can be derived that: Ap+ A
= AG + dxi.
where Ap.. is defined as the position vector of point G’
relative to point F
Equation (3) gives deformable fiber length:
[(1 + @)2 + (é’—w)?”zdx
Ox ox

Equation (4) gives the unit vector that runs parallel to
deformable fiber:

ﬂ. == [(1+_ﬁ_u)i+@k:| = glic
|Ar g ox Ox ds

This fiber has an initial tension &,. During the movement,
the length of the fiber changes and inner tension of the fiber
also changes. The instantaneous tension value of the fiber is
given by equation (5):

N = N()_}_EA(ds—dx!
x

Mathematics Model of Fiber Vibration
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In Figure 2, let us set up fiber model of axial direction
movement, fiber moves along X direction between two fix
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Figure 2. Fiber vibration model.
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Figure 3. Kelvin model.

rollers with constant initial tension and speed ¥7(¢). Now, we
assume that cross direction vibration exists only at @
direction, and the vibration displacement is @(x, ¢). The
visco-elasticity fiber system is equivalent to Kelvin model in
Figure 3. According to Newton Law and Hamilton Principle,
we set up fiber vibration differential equation follows [4]:
c2?392=52—f+2V0"2—“’+V222£+3—m—“’ (6)
Ox ot Ox Ot o> Ot Ox
where ¢ = ,/T,/pA meaning the fiber wave velocity, T} is
the constant of initial tension, p is the linear density, 4 is
cross-sectional, L is the distance between two rollers. There
is no cross direction vibration, the boundary condition is:

w(0,1) = 0, o(L,f)=0 Q)

During the following analyses, we assume that the axial
direction speed ¥(7) is:

V(t) = Vy+ V,cos(Q) (8)

where ¥} is the average speed, ¥, and Q represent amplitude
value and frequency of simple harmonic wave. On sub-
stituting the above formulas into equation (6), we obtain:
2 2 2 2
2w 2 2.0 Jdw I
=+ (V- )= +2Vy=—— + 2V cos(Q2t
Py s o2 loxor T O oz
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We can assume that the fiber vibration modality is the

standard chord vibration modality. Using Galerkin method
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and adopting separate variable method, we can separate time
variable ¢ from space variable x:

N
ox = 3 qn(z)sin(”T”x) (10)

n=1

where ¢,(7) is the fiber n™ order general displacement
function and sin(»n7zx/L) is the vibration mode function.

In terminal excitation vibration of tensioning fiber, basic
modality is dominant. We choose order 1 modality of equation
(10), and substitute it into equation (9). We obtain general
Mathieu equation as [5]:

2 2
- 2 2
i + L%(c ~Vo)g, - 2L% VoVicos(Qn)g,

2
~Zpyicos’(Qt)g, = 0 (11)
Iz
Introducing nondimensional variables:
|4 v
r=£, }/=—0, a1=——1, azﬂ, o = 7cQ (12)
7c c Vo & L

where ¢1is a small parameter, it satisfies 0 < £< 1.
On substituting equation (12) into equation (11), we obtain:

. 2 24 2
G1+(1-7)q, - &2y acos(w7)q,

—g4;/20,f2cosz(a)z')q1 =0 (13)
Generally, axial direction speed V(? is far slower than

wave speed ¢, let us set a)g = 1-%", substitute it into
equation (13) and omit high order term:

g, + a)gq, = 522y2acos(a)r)q] (14)

Set 6= 602,6" =_& 72a, t = w1/2, substitute them into
equation (14), we obtain standard Mathieu equation as:

G+ (5+2&'cos2t)g = 0 (15
Dynamics Unstable Region of Fiber Vibration

We analyze dynamics unstable region and feedback curve
in main parameter resonant vibration using the method of
harmonic balance and method of perturbation. When &= 0,
the period solution with 27 of the fork equation g+ dg =0
can be written as [5,6]:

g = acos(2n—1)t+bsin(2n-1)t (n=1,2,..)

For 6 = (2n- 1)2

Let us discuss the situation when d'is close to 1 in equation

(15). Set:

S=1+¢£6+¢&%65,.. (16)
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Firstly, we assume approximate solution in equation (15)
is: ; '

q = A;cost+ A5cos3¢ a7
Asaresult: ¢ = — A cost—9A4;c0s3¢ (18)
Set A, = a, Ay = Agg+ & Ay + Ay + ... (19)

Substituting equations (16)~(19) into equation (15), we

can obtain:

[(6'+ &6, +&°8,)a+ & (Asy + &' Ay,) ] cost
+[(-8+¢&'6, +g'2§2)(A30+e9’A31 +g’2A32)+g’a]c053t
+...=0 20)

Knowing that the coefficients of cost and cos3¢ are equal

to zero, we obtain:

(6 +88,+°5,)a+e (Ay+&45,) =0

(—8+8 5,487 85)(Asg+E Ay + & Ap)+a=0  (21)

We may work out:

1
A =0, 8, = -1, 43, =2, 5, = —
30 1 31 8 2 8
Also we can obtain the period solution and the transition

curve as:

q = acost+%a’acos3t
2
= acosgt+lgz(zg) acos3—Qt 22)
2 8 \¢ 2
, VoV, VoVi\2
5=1-g-Le2 =1y o 1000 (23)
8 > 8N 2

In a similar way, we assume that approximate solution in
equation (15) is:

q = A;sint + A5sin3¢

We can obtain period solution and transition curve as:

q = asint+%8’asin3t
2
= asin% + %€Z(E> asin%Qt 24)
c
” VoV VoV 2
5= 1as-Len o Lon LT (25)
¢ c

To Mathieu equation, the value of period 7 and 27 come
into curve on J— &' plane, so it makes up a boundary
between stable solution and unstable solution. Here, we
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Figure 4. System stability chart with various values of parameter
V..
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Figure 5. System stability chart with various values of parameter
Ve,

figure out the transition curve on Figure 4 and Figure 5.

Figure 4 shows the stable region variance diagram in
which system in different parameter ¥, follows the changes
of parameter V,. Figure 5 shows the stable region variance
diagram in which system in different parameter ¥, follows
the changes of parameter V.

The above two diagrams show that unstable region
increases with the increase of 7, and ¥}, Therefore, decreasing
the values of V; and V is beneficial to the stabilization of
fiber movement.

Conclusions

This paper uses analytical method of nonlinear vibration
to conduct researches on fiber axial direction movement in
chemical fiber production. The researches show:

1. By increasing initial tension of fiber, the stable region of

fiber movement can be increased.

2. By decreasing linear density of fiber, the stable region
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of fiber movement can be increased.

3. By decreasing the speed of fiber, the stable region of
fiber movement can be increased.

4. By decreasing fluctuation amplitude value of fiber
speed, the stable region of fiber movement can be
increased.

5. This paper assumes that §is approximately equal to 1. If
we choose even more order approximate solution, we
can solve for multi-unstable regions. But the tendency is
that the unstable region gets narrower when & gets
bigger.
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