초록
The sliding contact interface of machine components such as bearings, gears frequently operates in lubrication at the inception of sliding failure under high loads, speed and slip. The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. Most surface failure in sliding contact region result from frictional heat generation. However, it is difficult to measure temperature rise experimentally. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. The surface temperature rise is related in contact pressure, sliding speed, material properties and lubrication thickness. Though roughness, load, ect all of the condition, are same, film thickness varies with velocity. In this study, surface temperature rise due to frictional heating in lubrication is calculated with various velocities. Surface film shearing and dry solid asperity contact are used to simulate the change of frictional heat in lubricated contact