Diversity Analysis of Japonica Rice using MITE-transposon Display

MITE-AFLP를 이용한 자포니카 벼의 다양성 검정

  • Hong Seong-Mi (Chungnam National University) ;
  • Kwon Soo-Jin (National Institute of Agricultural Biotechnology (NIAB), RDA) ;
  • Oh Chang-Sik (Chungnam National University) ;
  • Wessler Susan R. (Department of Botany, University of Georgia) ;
  • Ahn Sang-Nag (Chungnam National University)
  • 홍성미 (충남대학교 농업생명과학대학) ;
  • 권수진 (농촌진흥청 농업생명공학연구원) ;
  • 오창식 (충남대학교 농업생명과학대학) ;
  • ;
  • 안상낙 (충남대학교 농업생명과학대학)
  • Published : 2006.06.01

Abstract

Miniature inverted transposable elements (MITEs) are abundant genomic components in plant including rice. MITE-transposon display (MITE-TD) is an Amplified Fragment Length Polymorphism (AFLP)-related technique based on MITE sequence. In this study, we used the MITE-AFLP for the analysis of diversity and relation-ship of the 114 japonica accessions. Of the several MITEs, the mPing family was applied to detect polymorphisms based on PCR amplification. The BfaI adaptor primer and the specific primer derived from mPing terminal inverted repeat (TIR) region were used to PCR amplification of 114 accessions. Nine primer pairs produced a total of 160 polymorphic bands. PIC values of the polymorphic bands generated by nine primer pairs ranged from 0.269 (BfaI + ACT) to 0.426 (BfaI + T). Each accession revealed a distinct fingerprint with two primer combinations, BfaI + G and BfaI + C. Cluster analysis using marker-based genetic similarity classified 114 accessions into five groups. MITE-AFLP markers were genetically mapped using a population of 80 BILs (BC1F7) derived from a cross between the rice accessions, Milyang 23 and Hapcheonaengmi 3. Eight of the markers produced with the primer pair BfaI + 0 were mapped on chromosomes 1, 2, 4, 5, 7, and 9. Considering that one MITE-AFLP marker on chromosome 7 was tightly linked to the Rc gene, the MITE-AFLP markers will be useful for gene tagging and molecular cloning.

1. 자포니카 벼 114 계통에 대해 다양성과 근연관계를 확인하고자 MITE 중에서 mPing family를 이용하여 MITE-TD 기법으로 분석하여 품종간의 다양성 정도를 산출한 결과 마커들의 PIC 값이 $0.293{\sim}0.499$ 범위로 나타났다. 2. 두 개의 mPing primer와 selective primer인 BfaI+G 와 BfaI+C의 조합을 이용하였을 때, 공시계통인 114개의 자포니카 벼 전체를 구분할 수 있었다. 3. NTSYS-pc를 이용한 근연관계 분석 결과, 유사계수의 범위는 0.802에서 부터 0.081까지였고, 자포니카 벼 114 품종은 크게 5 개의 그룹으로 분류되었다. 4. 8 개의 MITE-AFLP marker 연관분석을 밀양 23호/합천앵미 3호 조합 RIL을 이용하여 실시한 결과, 이들은 염색체 l번, 2번, 4번, 5번, 7번 그리고 9번에 각각 위치함을 확인하였다.

Keywords

References

  1. Anderson, J. A., G. A. Churchill, J. E. Autrigue, and S. D. Tanksley. 1993. Optimizing parental selection for genetic linkage map. Crop Sci. 35 : 1439-1445 https://doi.org/10.2135/cropsci1995.0011183X003500050030x
  2. Bureau, T. E. and S. R. Wessler. 1992. Tourist, a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell. 4 : 1283-1294 https://doi.org/10.1105/tpc.4.10.1283
  3. Bureau, T. E. and S. R. Wessler. 1994a. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl Acad. Sci. USA. 91 : 1411-1415
  4. Bureau, T. E. and S. R. Wessler. 1994b. Stowaway, a new family of inverted repeat elements associated with genes of both monocotyledonous and dicotyledonous plants. Plant Cell. 6 : 907-916 https://doi.org/10.1105/tpc.6.6.907
  5. Bureau. T. E., P. C. Ronald. and S. R. Wessler. 1996. A computer based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. U.S.A. 93 : 8524-8529
  6. Casa, A. M., S. E Mitchell, O. S. Smith, J. C. Register III, S. R. Wessler, and S. Kresovich. 2000. Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor. Appl. Genet. 104 : 104-110 https://doi.org/10.1007/s001220200012
  7. Causse, M. A., T. M. Fulton, Y. G. Cho, S. N. Ahn, J. Chun¬wongse, K. Wu, J. Xiao, Z. Yu, P. C. Ronald, S. E. Harrington, G. Second, S. R. McCouch, S. D. Tanksley. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138 : 1251- 1274
  8. Cho, Y. G., S. R. McCouch, M. Kuiper, M. R. Kang, J. Pot, J. T. M. Groenen, and M. Y. Eun. 1998. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theoe. Appl. Genet. 97 : 370-380 https://doi.org/10.1007/s001220050907
  9. Doyle J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19 : 11-15
  10. Finnegan, D. J. 1992. Transposable elements Curr. Opin. Genet. Devel. 2 : 861-867 https://doi.org/10.1016/S0959-437X(05)80108-X
  11. Flavell, A. J., S. R. Pearce, and A. Kumar. 1994. Plant transposable elements and the genome. Curr. Opin. Genet. Devel. 4 : 838-844 https://doi.org/10.1016/0959-437X(94)90068-X
  12. Ji, H. S., H. J. Koh, S. U. Park, and S. R. McCouch. 1998. Varietal Identification in Japonica Rice Using Microsatellite DNA markers. Korean J. Breed. 30(4) : 350-360
  13. Jiang, N., Z. Bao, X. Zhang, H. Hirochika, S. R. Eddy, S. R. McCouch, and S. R. Wessler. 2003. An active DNA transposon family in rice. Nature 421(6919) : 163-167 https://doi.org/10.1038/nature01214
  14. Kikuchi, K., K. Terauchi, W. Masamitsu, and H. Y. Hirano. 2003. The plant MITE mPing is mobilized in anther culture. Nature 421(6919) : 167-169 https://doi.org/10.1038/nature01218
  15. Komori, T., and N. Nitta. 2003. High frequency of sequence polymorphism in rice MITEs and application to efficient development of PCR-based markers. Breeding Science 53 : 85-92 https://doi.org/10.1270/jsbbs.53.85
  16. Kwon, S. J., S. N. Ahn, H. C. Choi, and H. P. Moon. 1999. Evaluation of genetic relationship and fingerprinting of rice varieties using microsatellite and RAPD markers. Korean J. Crop Sci. 44(2) : 112-116
  17. Kwon, S. J., S. N. Ahn, H. C. Hong, H. K. Hwang, and H. C. Choi. 2002. SSR Diversity in Japonica RICE Cultivars and its Association to Several Traits. Korean J. Breed. 34(1) : 57-63
  18. Kwon, Y. S., J. Y. Moon, Y. S. Kwon, D. Y. Park, W. M. Yoon, I. H. Song, and S. I. Yi. 2003. AFLP Analysis for Cultivar Discrimination in Radish and Chinese Cabbage. Korean J. Breed. 35(5) : 319-328
  19. Le, O. H., S. Wright, Z. Yu, and T. Butrau. 2000. Transposon dirversity in Arabidopsis thaliana. Proc. Natl Acad. Sci. U.S.A. 97 : 7376-7381
  20. Nei, M. and W. Li. 1979. Mathmatical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76 : 5269-5273
  21. Oh, C. S., Y. H. Choi, S. J. Lee, D. B. Yoon, H. P. Moon, and S. N. Ahn. 2004a. Mapping of Quantitative Trait Loci for Cold Tolerance in Weedy Rice. Breed. Sci. 54 : 373-380 https://doi.org/10.1270/jsbbs.54.373
  22. Oh, C. S., S. J. Lee, D. B. Yoon, J. P. Suh, and S. N. Ahn. 2004b. QTLs for Domestication-related and Agronomic Traits in Temperate Japonica Weedy Rice. Korea J. Breed. 36(1) : 20-30
  23. Park, K. C., C. S. Jeong, M. T. Song, and N. S. Kim. 2003a. A New MITE Family, Pangreanjain Gramineae Species. Mol. Cells. 15(3) : 373-380
  24. Park, K. C., J. K. Lee, N. H. Kim, Y. B. Shin, H. J. Lee, and N. S. Kim. 2003b. Genetic variation in Oryza species detected by MITE-AFLP. Genes Genet. Syst. 78 : 235-243 https://doi.org/10.1266/ggs.78.235
  25. Park, K. C., N. H. Kim, Y. S. Cho, K. H. Kang, J. K. Lee, and N. S. Kim. 2003. Genetic variation of AA genome Oryza species measured by MITE-AFLP. Theor. Appl. Genet. 107 : 203-209 https://doi.org/10.1007/s00122-003-1252-x
  26. Rohlf, F. J. 1992. NTSYS-pc : numerical taxonomy and mult-ivariate analysis system, version 1.8 Exeter Software, New York
  27. Suh, J. P., Y. H. Choi, K. J. Kim, Y. C. Cho, S. J. Kwon, Y. P. Jeong, J. U. Jeung, I. S. Choi, H. C. Choi, and H. G. Hwang. 2004. Genetic Dirversity QTLs for Grain Quality in Japonica Rice. Korean J. Breed. 36(1) : 31-37
  28. Tarchini R., P. Biddle, R. Wineland, S. Tingey, and A. Rafalski. 2000. The complete sequence of 349kb of DAN around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell. 12 : 381-391 https://doi.org/10.1105/tpc.12.3.381
  29. Turcotte, K., S. Srinivasan, and T. Bureau, 2001. Survey of transposable elements from rice genomics sequences. Plant J. 25(2) : 169-179 https://doi.org/10.1046/j.1365-313x.2001.00945.x
  30. Vos, P., R. Rogers, M. Bleeker, M. Reijans, van de T. Lee, M. Hornes, B. A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res. 23 : 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  31. Wessler, S. R., T. E. Bureau, and S. E. White. 1995. LTR retrotransposons and MITE: important players in the evolution of plant genomes. Curr. Opin. Genet. Devel. 5 : 814-821 https://doi.org/10.1016/0959-437X(95)80016-X
  32. Wessler, S. R., A. Nagel, and A. Casa. 2001. Miniature inverted repeat transposable elements help to creat dirversity in maize and rice. Rice Genetics IV. International Rice Reaearch Institute, Philippines. pp. 107-116