DOI QR코드

DOI QR Code

강보강재로 보강된 실트질 모래의 배수 및 비배수 인발력

Drained and Undrained Pullout Capacity in Steel Strip Reinforced Silty Sands

  • 발행 : 2006.06.01

초록

지하수 급속저하와 같은 비배수 상태에서는 흙과 보강재 사이의 경계면(interface)에서 발생하는 과잉간극수압으로 인하여 유효응력이 감소할 수도 있으며, 이는 보강재의 인발력 감소로 이어지기도 한다. 본 연구에서는 각기 다른 종류의 흙(순수모래, 5, 10, 15, 35% 실트질 모래)과 상재하중(30, 100, 200kPa)을 대상으로 배수 및 비배수 실내인발시험을 실시하여 최대 배수인발력과 최대 비배수인발력을 서로 비교하였다. 시험결과 배수인발력과 비배수인발력 모두 실트 함유량에 의해 영향을 받고, 흙의 내부마찰각이 증가함에 따라 인발력 또한 증가하는 것으로 나타났다. 또한, 상재하중이 증가함에 따라 인발력도 증가하였으며, 최대인발력에 도달하는데 소요되는 인발거리도 증가하였다. 비배수 시험에서는 과잉간극수압이 발생함에 따라 보강재에 작용하는 유효응력이 감소하였으며, 그 결과 배수 조건과 비교하여 인발력과 인발거리가 감소하였다.

Effective stresses may decrease due to generation of excessive pore pressure at the interface between soil and reinforcement in undrained condition such as rapid drawdownof groundwater level, resulting in the decrease in pullout capacity of the reinforcement. In this research, a series of laboratory pullout tests have been performed on different materials (clean sand, 5, 10, 15 and 35% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The test results show that both drained and undrained pullout capacity are influenced by silt contents and increase with the increase of friction angle of the soil. The pullout capacity and the pullout displacement required to reach the peak value also increase as the overburden pressure increases. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in the decrease in pullout capacity and pullout displacement.

키워드

참고문헌

  1. Abramento, M. and Whittle, A. J. (1995), 'Experimental Evaluation of Pullout Analyses for Planar Reinforcements', Journal of Geotechnical Engineering, June, pp.486-492
  2. Alfaro, M. C., Miura, N. and Bergado, D. T. (1995), 'Soil-Geogrid Reinforcement Interaction by Pullout and Direct Shear Tests', Geotechnical Testing Journal, Vo1.18, No.2, pp.157-167 https://doi.org/10.1520/GTJ10319J
  3. Bayoumi, A. (2000), 'Evaluation of Pullout Capacity of Reinforced Ottawa Sand under Drained and Undrained Conditions', MS Thesis, Purdue University
  4. Bergado, D. T., Shivashankar, R., Alfaro, M. C., Chai, J-C. and Balasubramaniam, A. S. (1993), 'Interaction Behavior of Steel Grid Reinforcements in a Clayey Sand', Geotechnique 43. No.4, pp.589-603 https://doi.org/10.1680/geot.1993.43.4.589
  5. Fannin, R. J., Vaid, Y.P. and Shi, Y. (1994), 'A Critical Review of the gradient ratio test', Geotechnical Testing Journal, ASTM, GTJODJ, 22(3), pp.22-31
  6. Guillous, A., Schlosser, F. and Long, N. T. (1979), 'Etude du Frottement Sable-Armature en Laboratoire', Proceedings International Conference on Soil Reinforcement, Paris, pp.35-40
  7. Hayashi, S., Makiuchi, K. and Ochiai, H. (1994), 'Testing Methods for Soil-Geosynthetic Frictional Behaviour-Japanese Standard', 5th Int. Conf on Geotextiles, Geomembranes and Related Products, Singapore, September, pp.411-415
  8. Kuebris, R. H. and Vaid, Y. P. (1988), 'Sand Sample Preparation - The Slurry Deposition Method', Soils and Foundations, Vo1.28, No.4, pp.107-118
  9. Lee, H. S. (2003), 'The Undrained Pullout Capacity of Reinforced Soil', Ph. D Thesis, Purdue University
  10. Ochiai, H., Hayashi, S., Otani, J. and Hirai, T. (1992), 'Evaluation of Pull-Out Resistance of Geogrid Reinforced Soils', Proc. of Int. Symposium on Earth Reinforcement Practice, Kyushu, Japan, pp.141-146
  11. Palmeira, E. M. and Milligan, G. W. E. (1989), 'Scale and other Factors Affecting the Results of Pullout Tests of Grids Buried in Sand', Geotechnique, London, pp.511-524
  12. Salgado, R., Bandini, P. and Karim, A. (2000), 'Shear Strength and Stiffness of Silty Sand', Journal of Geotech and Geoenvironmental Eng. Div. ASCE