Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants

주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구

  • Kim Jai-Soo (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2006.06.01

Abstract

This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene amplification through PCR has been possible to figure out microbial population and identification. Active microbial community structures have been analyzed using a variety of fingerprinting techniques such as DGGE, SSCP, RISA, and microarray and fatty acid analyses such as PLFA and FAME, and the activity of a specific strain has been examined using FISH. Also, this review included the dominant microflora in groundwater contaminated with fuel components such as n-alkanes, BTEX, MTBE, and ethanol and chlorinated compounds such as TCE, PCE, PCB, CE, carbon tetrachloride, and chlorobenzene.

최근에 적용된 지하수 미생물의 군집구조를 밝히는 분자생물학적 및 생화학적 방법들에 대해서 알아보았고 그 결과로서 지하수의 주요 오염물질에 따른 활성화된 미생물군집들이 무엇인지를 밝힌 연구논문들을 종합하여 정리하였다. PCR에 의한 유전자 증폭기술의 발달로 배양 없이 미생물 종류와 개체군을 파악할 수 있게 되었고 각종 finger-printing 방법 (DGGE, SSCP, RISA, microarray) 과 지방산분석법 (PLFA/FAME)을 이용하여 활성화 된 미생물군집구조를 분석하였으며 FISH 등의 방법으로 특정균의 활성도를 알아본 사례들을 조사하였다. 대표적인 지하수오염물질인 유류성분 (n-alkanes, BTEX, MTBE, ethanol)과 염소계 용매 (TCE, PCE, PCB, CE, carbon tetrachloride, chloro-benzene) 등으로 오염되었을 때 우점하는 지하수 미생물상에 대해 보고된 내용을 포함하였다.

Keywords

References

  1. Amann, R.I., Ludwig, W., and Schleifer, K.-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143-169
  2. Anderson, R.T. and Lovley, D.R., 1997, Ecology and biogeochemistry of in situ groundwater bioremediation, Adv. Microb. Ecol., 15,289-350
  3. Aulenta, F., Rossetti, S., Majone, M., and Tandoi, V., 2004, Detection and quantitative estimation of Dehalococcoieds spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridization (FISH) and kinetic analysis, Appl. Microbiol. Biotechnol., 64, 206-212 https://doi.org/10.1007/s00253-003-1503-4
  4. Beeman, R.E. and Bleckmann, C.A., 2002, Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results, J. Contam. Hydrol., 57, 147-159 https://doi.org/10.1016/S0169-7722(02)00008-6
  5. Bekins, B.A., Cozzarelli, I.M., Godsy, E.M., Warren, E., Essaid, H.I., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations, J. Contam. Hydrol., 53, 387-406
  6. Boschker, H.T.S., de Graaf, W., Koster, M., Meyer-Reil, L.-A., and Cappenberg, T.E., 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol., 35, 97-103 https://doi.org/10.1111/j.1574-6941.2001.tb00792.x
  7. Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J., and Cappenberg, T.E., 1998, Direct linking of microbial populations to speci'c biogeochemical processes by $^13C$-labeling of biomarkers, Nature, 392, 801-805
  8. Bossio, D.A. and Scow, K.M., 1998, Impacts of carbon arid flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol., 35, 265-278 https://doi.org/10.1007/s002489900082
  9. Cavalca, L., Della Amico, E., and Andreoni, V., 2004, Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes, Appl. Microbiol. Biotechnol., 64, 576-587 https://doi.org/10.1007/s00253-003-1449-6
  10. Cavigelli, M.A., Robertson, G.P., and Klug, M.J., 1995, Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure, Plant Soil, 170, 99-113 https://doi.org/10.1007/BF02183058
  11. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J., and Heron. G., 2001, Biochemistry of landfill leachate plumes, Appl. Geochem., 16, 695-718
  12. Church, C.D., Tratnyek, P.J., Pankow, J.F., Landmeyer, J.E., Baehr, A.L., Thomas, M.A., and Schirmer, M., 1999, Effects of environmental conditions on MTBE degradation in model column aquifers, Proceedings of the Technical Meeting of the USGS Toxic Substances Hydrology Program, Vol. 3, Charleston, SC, p. 93-101
  13. Corseuil, H.X., Hunt, C.S., Ferreira dos Santos, R.C., and Alvarez, P.J.J., 1998, The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradtion. Water Res., 33, 2065-2072
  14. Cozzarelli, I.M., Bekins, B.A., Baedecker, M.J., Aiken, G.R., Eganhouse, R.P., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume, J. Contam. Hydrol., 53, 369-385
  15. Da Silva, M.L.B. and Alvarez, P.J.J., 2002, Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns, J. Environ. Eng., 128(9), 862-867 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(862)
  16. Deeb, R.A., Hu, H.-Y., Hanson, J.S., Scow, K.M., and Alvarez-Cohen, L., 2001, Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate, Environ. Sci. Technol., 35, 312-317 https://doi.org/10.1021/es001249j
  17. Devlin, J.F., Katie, D., and Barker, J.F., 2004, In situ sequenced bioremediation of mixed contaminants in groundwater, J. Contam. Hydrol., 69, 233-261 https://doi.org/10.1016/S0169-7722(03)00156-6
  18. Duba, A.G., Jackson, K.J., Jovanovich, M.C., Knapp, R.B., and Taylor, R.T., 1996, TCE remediation using in situ, resting-state bioaugrnentation, Environ. Sci. Technol., 30, 1982-1989 https://doi.org/10.1021/es950730k
  19. Dybas, M.J., Hyndman, D.W., Heine, R., Tiedje, J., Linning, K., Wiggert, D., Voice, T., Zhao, X., Dybas, L., and Criddle, C.S., 2002, Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation, Environ. Sci. Technol., 36, 3635-3644 https://doi.org/10.1021/es0114557
  20. Dybas, M.J., Barcelona, M., Bezborodnikov, S., Davies, S., Forney, L., Heuer, H., Kawka, O., Mayotte, T., Sepu'lveda-Torres, L., Smalla, K., Sneathen, M., Tiedje, J., Voice, T., Wiggert, D.C., Witt, D.C., and Criddle, C.S., 1998, Pilot-scale evaluation of bioaugmentation for in-situ remediation of carbon tetrachloridecontaminated aquifer, Environ. Sci. Technol., 32, 3598-3611 https://doi.org/10.1021/es980200z
  21. Eriksson, S., Ankner, T., Abrahamsson K., and Hallbeck. L., 2005, Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions, Bioremediation, 16, 253-263
  22. Essaid, H.I., Cozzarelli, I.M., Eganhouse, R.P., Herkelrath, W.N., Bekins, B.A., and Delin, G.N., 2003, Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site, J. Contam. Hydrol., 67, 269-299 https://doi.org/10.1016/S0169-7722(03)00034-2
  23. Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S.N., and Fantroussi, S.E., 2004, Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics, Appl. Microbiol. Biotechnol., 66, 123-130 https://doi.org/10.1007/s00253-004-1703-6
  24. Fang, J., and Barcelona, M.J., 1998, Biogeochemical evidence for microbial community change in a jet fuel hydrocarbon contaminated aquifer, Org. Geochem., 29, 899-907 https://doi.org/10.1016/S0146-6380(98)00174-0
  25. Felske A. and Akkermans A.D.L., 1998, Spatial homogeneity of abundant bacterial 16S rRNA molecules in Grassland soils, Microb. Ecol., 36, 31-36 https://doi.org/10.1007/s002489900090
  26. Feris, K.P., Hristova, K., Grebreyesus, B., Mackay, D., and Scow, K.M., 2004, A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community, Microb. Ecol., 48, 589-600 https://doi.org/10.1007/s00248-004-0001-2
  27. Glucksman, A.M., Skipper, H.D., Brigmon, R.L., and Domingo, J.W., 2000, Use of the MIDI-FAME technique to characterize groundwater communities, J. Appl. Microbiol., 88(4), 711-719 https://doi.org/10.1046/j.1365-2672.2000.01058.x
  28. Haack, S.K., Fogarty, L.R., West, T.G., AIm, E.W., McGuire, J.T., Long, D.T., Hyndman, D.W., and Forney, L.J., 2004, Spatial and temporal changes in microbial community structure associated with rechargeinfluenced chemical gradients in a contaminated aquifer, Environ. Microbiol., 6, 438-448 https://doi.org/10.1111/j.1462-2920.2003.00563.x
  29. Hadrys, H., Balick, M., and Schierwater, B., 1992, Applications of random amplified polymorphic DNA (RAPD) in molecular ecology, Mol. Ecol., 1, 55-63 https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
  30. Hubbard, C.E., Barker, J.P., O'Hannesin, S.F., Vandegriendt, M., and Gillham, R., 1994, Transport and fate of dissolved methanol, ethyltertiary-butyl-ether, and monoaromatic hydrocarbons in a shallow sand aquifer, American Petroleum Institute, Health & Environmental Sciences Department, Washington, DC, p.226
  31. Hunt, C.S., dos Santos Ferreira, R., Corseuil, H.X, and Alvarez, P.J.J., 1997, Effect of ethanol on aerobic BTX degradation, In Situ and On-site Bioremediation, Leeson A.L., and Alleman, B.C., (eds.), Battelle, Columbus, OH, p. 49-54
  32. Hunkeler, D., Hohener, P., and Zeyer, J., 2002, Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer, J. Contam. Hydrol. 59, 231-245 https://doi.org/10.1016/S0169-7722(02)00059-1
  33. Huys, G., Kersters, I., Vancanneyt, M., Coopman, R., Janssen, P., and Kersters, K., 1995, Diversity of Aeromonas sp. in Flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs), J. Appl. Bacteriol., 78(4), 445-455 https://doi.org/10.1111/j.1365-2672.1995.tb03432.x
  34. Ibekwe, A.M. and Fennedy, A.C., 1988, Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions, FEMS Microbial. Ecol., 26, 151-163
  35. Junca, H. and Pieper, D.H., 2004, Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries, Environ. Microbiol., 6, 95-110 https://doi.org/10.1046/j.1462-2920.2003.00541.x
  36. Kikuchi, T., Iwasaki, K., Nishihara, H., Takamura, Y., and Yagi, O.,2002, Quantitative and rapid detection of the trichloroethylenedegrading bacterium Methylocystis sp. M in groundwater by real-time PCR, Appl. Microbiol. Biotechnol., 59, 731-736 https://doi.org/10.1007/s00253-002-1087-4
  37. Kleikemper, J., Schroth, M.H., Sigler, W.V., Schmucki, M., Bernasconi, S.M., and Zeyer, J., 2002, Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer, Appl. Environ. Microbiol., 68, 1516-1523 https://doi.org/10.1128/AEM.68.4.1516-1523.2002
  38. Klein, A., and Schnorr. M., 1984, Genome complexity of methanogenic bacteria, J. Bacteriol., 158(2), 628-631
  39. Knittel, K., Boetius, A., Eilers, A.L.H., Lochte, K., and Linke. O.P.P., 2003, Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon), Geomicrobiol. J., 20, 269-294 https://doi.org/10.1080/01490450303896
  40. Koenigsberg, S., Sandefur, C., Mahaffey, W., Deshusses, M., and Fortin, N., 1999, Peroxygen mediated bioremediation of MTBE, In Situ Bioremediation of Petroleum Hydrocarbon and OtherOrganic Compounds, Vol. 3, Alleman, B.C., and Leeson, A., (eds.), Battelle Press, Columbus, OH, p. 3-18
  41. LaMontagne, M.G., Davenport, G.J., Hou, L.-H., and Dutta, S.K., 1998, Identification and analysis of PCB dechlorinating anaerobic enrichments by amplification: accuracy of community structure based on restriction analysis and partial sequencing of 16S rRNA genes, J. Appl. Microbiol., 84, 1156-1162 https://doi.org/10.1046/j.1365-2672.1998.00508.x
  42. Langworthy, D.E., Stapleton, R.D., Sayler, G.S., and Findlay, R.H., 1998, Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination, Appl. Environ. Microbiol., 64, 3422-3428
  43. Lee, S. and Furhman, J.A., 1990, DNA hybridization to compare species composition of natural bacterioplankton assemblages, Appl. Environ. Microbiol., 56, 739-746
  44. Lendvay, J.M., Loffier, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., and Shi, J., et al., 2003, Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431 https://doi.org/10.1021/es025985u
  45. Lovely, D.R., 1993, Dissimilatory metal reduction, Ann. Rev. Microbiol., 47, 263-290 https://doi.org/10.1146/annurev.mi.47.100193.001403
  46. MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.-J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574
  47. MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574
  48. Madigan, M.T., Martinko, J.M., and Parker, J., Brock Biology of Microorganisms, Prentice Hall, Upper Saddle River, NJ (2000)
  49. Major, D.W., McMaster, M.L., Cox, E.E., Edwards, E.A., Dworatzek, S.M., Hendrickson, E.R., Starr, M.G., Payne, J.A., and Buonamici, L.W. 2002, Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene, Environ. Sci. Technol., 36, 5106-5116 https://doi.org/10.1021/es0255711
  50. Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J., 2002, RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny, Appl. Environ. Microbiol., 68, 5367-5373 https://doi.org/10.1128/AEM.68.11.5367-5373.2002
  51. Marsh, T.L., 1999, Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products, Curr. Opin. Microbiol., 2, 323-327 https://doi.org/10.1016/S1369-5274(99)80056-3
  52. Miller, G.S., Milliken, C.E., and Sowers, K.S., 2005, Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-l, Environ. Scie. Technol., 30, 2631-2635
  53. Mormile, M.R., Liu, S., and Suflita, J.M., 1994, Anaerobic biodegradation of gasoline oxygenate: Extrapolation of information to multiple sites and redox conditions, Environ. Sci. Technol., 28, 1727-1732 https://doi.org/10.1021/es00058a026
  54. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ Microbiol. 59, 695-700
  55. Nealson, K.H. and Saffarini. D., 1994, Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343 https://doi.org/10.1146/annurev.mi.48.100194.001523
  56. Peacock, A.D., Chang, Y.J., Istok, J.D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K.L., and White, D.C., 2004, Utilization of microbial biofilms as monitors of bioremediation, Microb. Ecol., 47, 284-292
  57. Pelz, O., Tesar, M., Wittich, R.-M., Moore, E.R.B., Timmis, K.N., and Abraham, W.-R., 1999, Towards elucidation of microoial community metabolic pathways: unraveling the network of carbon sharing in a pollutant-degrading bacterial consortium by mmunocapture and isotopic ratio mass spectrometry, Environ. Microbiol., 1, 167-174 https://doi.org/10.1046/j.1462-2920.1999.00023.x
  58. Pfiffuer, S., Palumbo, A., Gibson, T., Ringelberg, D., and McCarthy, J., 1997, Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site, Appl. Biochem. Biotechnol., 63, 775-788 https://doi.org/10.1007/BF02920474
  59. Philippot, L., 2005, Tracking nitrate reducers and denitrifiers in the environment, Biochem. Soc. Trans., 33(1), 200-204 https://doi.org/10.1042/BST0330200
  60. Powers, S.E., Rice D., Dooher, B., and Alvarez, P.J.J., 2001, Will ethanol-blended gasoline affect groundwater quality? Using ethanol instead of MTBE as a asoline oxygenate could be less harmful to the environment, Environ. Sci. Technol., 35, 24A-30A https://doi.org/10.1021/es012247h
  61. Purohit, H.J., Raje, D.Y., Kapley, A., Padmanabhan, P., and Singh, R.N., 2003, Genomics tools in environmental impact assessment, Environ. Sci. Technol., 37, 356A-363A https://doi.org/10.1021/es032594m
  62. Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C., 2000, Stable-isotope probing as a tool in microbial ecology, Nature, 403, 646-649 https://doi.org/10.1038/35001054
  63. Ramsburg, C.A., Abriola, L.M., Pennell, K.D., Loffler, F.E., Gamache, M., Amos, B.K., and Petrovskis, E.A., 2004, Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman road site, Environ. Sci. Technol., 38, 5902-5914 https://doi.org/10.1021/es049675i
  64. Ranjard, L., Poly, F., and Nazaret. S., 2000, Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment, Res. Microbiol., 151, 167-177 https://doi.org/10.1016/S0923-2508(00)00136-4
  65. Rhee, S.K., Liu, X.D., Wu, L.Y., Chong, S.C., Wan, X.F., and Zhou, J.Z., 2004, Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50mer oligonucleotide microarrays, Appl. Environ. Microbiol., 70, 4303-4317 https://doi.org/10.1128/AEM.70.7.4303-4317.2004
  66. Rling, W.F.M., Van Breukelen, B.M., Braster, M., and Van Verseveld. H.W., 2000, Linking microbial community structure to pollution: Biolog-substrate utilization in and near a landfill leachate plume, Water Sci. Technol., 41, 47-53
  67. Roling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B., and van Verseveld, H.W., 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachatepolluted aquifer, Appl. Environ. Microbiol., 67, 4619-4629 https://doi.org/10.1128/AEM.67.10.4619-4629.2001
  68. Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D.B., and Lovley, D.R., 1999, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65, 3056-3063
  69. Ruiz-Aguilar, G.M.L, Fernandez-Sanchez, J.M., Kane, S.R, Kim, D., and Alvarez, P.J., 2002, Effect of ethanol and methyltert-butyl ether on monoaromatic hydrocarbon biodegradation: response variability for different aquifer materials under various electron-accepting conditions, Environ. Toxicol. Chem., 21, 2631-2639 https://doi.org/10.1897/1551-5028(2002)021<2631:EOEAMT>2.0.CO;2
  70. Salanitro, J.P., and Wisniewski, H.L., 1996, Observations on the Biodegradation and Bioremediation Potential of Methyl t-Butyl Ether, Proceedings of the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Washington, DC
  71. Schmidt, L.M., Delfino, J,J., Preston, J.F. 3rd, and St Laurent, G. 3rd, 1999, Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater, Chemosphere, 38(12), 2897-912 https://doi.org/10.1016/S0045-6535(98)00480-9
  72. Sedran, M.A., Pruden, A., Wilson, G.J., Suidan, M.T., and Venosa, A.D., 2002, Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium, J. Environ. Eng., 128(9), 830-835 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:9(830)
  73. Shi, Y., Zwolinski, M.D., Schreiber, M.E., Bahr, J.M., Sewell, G.W., and Hickey, W.J., 1999, Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments, Appl. Environ. Microbiol., 65, 2143-2150
  74. Smidt, H., and de Vos, W.M., 2004, Anaerobic microbial dehalogenation, Annu. Rev. Microbiol., 58, 43-73 https://doi.org/10.1146/annurev.micro.58.030603.123600
  75. Smith, A.E., Hristova, K., Wood, I., Mackay, D.M., Lory, E., Lorenzana, D., and Scow, K.M., 2005, Comparison of biostimulation versus bioaugmentation with bacterial strain PMl for treatment of groundwater contaminated with bethyl tertiary butyl ether (MTBE), Environ. Health Perspect., 113, 1-9 https://doi.org/10.1289/ehp.7433
  76. Spence, M.J., Bottrell, S.H., Thornton, S.F., Richnow, H.H., and Spence, K.H., 2005, Hydrochemical and isotopic effects associated with petroleum fuel biodegradtion pathways in a chalk aquifer, J. Contam. Hydrol., 79, 67-88 https://doi.org/10.1016/j.jconhyd.2005.06.003
  77. Stephen, J.R., Chang, Y.-J., Gan, Y.D., Peacock, A., Pfiffner, S.M., Barcelona, M.J., White, D.C., and MacNaughton, S.J., 1999, Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach, Environ. Microbiol., 1, 231-241 https://doi.org/10.1046/j.1462-2920.1999.00030.x
  78. Suflita, J.M., and Mormile, M.R., 1993, The anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface, Environ. Sci. Technol., 27, 976-978 https://doi.org/10.1021/es00042a022
  79. Sunnucks, P. and Wilson, A.C.C., Zenger, L.B.K., French, J., and Taylor, A.C., 2000, SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism In evolutionary biology and molecular ecology, Mol. Ecol., 9, 1699-1710 https://doi.org/10.1046/j.1365-294x.2000.01084.x
  80. Townsend, G.T., Prince, R.C., and Suflita, J.M., 2003, Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer, Environ. Sci. Technol., 37, 5213-5218 https://doi.org/10.1021/es0264495
  81. Von Keitz, V., Schramm, A., Altendorf, K., and Lipski, A., 1999, Characterization of microbial communities of biofilters by phospholipid fatty acid analysis and rRNA targeted oligonucleotide probes, Syst. Appl. Microbiol., 22, 626-634 https://doi.org/10.1016/S0723-2020(99)80016-2
  82. Warren, E.B.B., Godsy, E., and Smith, V., 2004, Inhibition of acetoclastic methanogenesis in crude oil- and creosote-contaminated groundwater, Bioremediation J., 8, 1-11 https://doi.org/10.1080/10889860490465840
  83. Wenderoth, D.F., Rosenbrock, P., Abraham, W.-R., Pieper, D.H., and Hofle, M.G., 2003, Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater, Microb. Ecol., 46, 161-176 https://doi.org/10.1007/s00248-003-2005-8
  84. White, D.C., Flemming, C.A., Leung, K.T., and MacNaughton, S.J., 1998, In situmicrobial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms, J. Microbiol. Methods, 32, 93-105 https://doi.org/10.1016/S0167-7012(98)00017-7
  85. Widdel, F., and Hansen, T.A., 1991, The dissimilatory sulfateand sulfur-reducing bacteria, The Prokaryotes, 2nd edition, vol. I, Balows, A., Trper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds.), Springer-Verlag, New York. p. 583-624
  86. Wilson, R.D., MacKay, D.M., and Scow, K.M., 2002, In situ MTBE biodegradation supported by diffusive oxygen release, Environ. Sci. Technol., 36, 190-199 https://doi.org/10.1021/es015562c
  87. Yeh, C.K. and Novak, J.T., 1994, Anaerobic biodegradation of gasoline oxygenates in soils, Water Environ Res., 66, 744-752 https://doi.org/10.2175/WER.66.5.11
  88. Zang, H., Logan, B.E., Regan, J.M., Achenbach, L.A., and Bruns, M.A., 2005, Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchloratereducing bioreactor, Microb. Ecol., 49, 388-398 https://doi.org/10.1007/s00248-004-0273-6