DOI QR코드

DOI QR Code

ON WEYL'S THEOREM FOR QUASI-CLASS A OPERATORS

  • Duggal Bhagwati P. (8 Redwood Grove Northfields Avenue) ;
  • Jeon, In-Ho (Department of Mathematics Education Seoul National University of Education) ;
  • Kim, In-Hyoun (Department of Mathematics Seoul National University)
  • Published : 2006.07.01

Abstract

Let T be a bounded linear operator on a complex infinite dimensional Hilbert space $\scr{H}$. We say that T is a quasi-class A operator if $T^*\|T^2\|T{\geq}T^*\|T\|^2T$. In this paper we prove that if T is a quasi-class A operator and f is a function analytic on a neigh-borhood or the spectrum or T, then f(T) satisfies Weyl's theorem and f($T^*$) satisfies a-Weyl's theorem.

Keywords

References

  1. P. Aiena, Classes of operators satisfying a-Weyl's theorem, Studia Math. 169 (2005), no. 2, 105-122 https://doi.org/10.4064/sm169-2-1
  2. P. Aiena, C. Carpintero and E. Rosas, Some characterizations of operators sat- isfying a-Browder's theorem, J. Math. Anal. Appl. 311 (2005), no. 2, 530-544 https://doi.org/10.1016/j.jmaa.2005.03.007
  3. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Oper- ator Theory 13 (1990), no. 3, 307-315 https://doi.org/10.1007/BF01199886
  4. M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations Operator Theory 53 (2005), 497-508 https://doi.org/10.1007/s00020-004-1332-6
  5. L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288 https://doi.org/10.1307/mmj/1031732778
  6. S. V. Djordjevic and Y. M. Han, Browder's theorem and spectral continuity, Glasgow Math. J. 42 (2000), no. 3, 479-486 https://doi.org/10.1017/S0017089500030147
  7. B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203- 217
  8. B. P. Duggal, Weyl's theorem for totally hereditarily normaloid operators, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 3, 417-428 https://doi.org/10.1007/BF02875734
  9. T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001
  10. T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403
  11. R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988
  12. R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124 https://doi.org/10.1090/S0002-9947-97-01881-3
  13. H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982
  14. I. H. Jeon, Weyl's theorem and quasi-similarity, Integral Equations Operator Theory 39 (2001), no. 2, 214-221 https://doi.org/10.1007/BF01195818
  15. I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617-627 https://doi.org/10.4134/JKMS.2004.41.4.617
  16. I. H. Jeon and I. H. Kim, On operators satisfying $T*\midT^2\midT\geqT*\midT^2\midT$, Lin. Alg. Appl. (to appear)
  17. I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6 (2003), no. 2, 309-315
  18. K. B. Laursen and M. N. Neumann, Introduction to local spectral theory, Claren- don Press, Oxford, 2000
  19. W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), 319-331 https://doi.org/10.1007/BF01203773
  20. W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138
  21. W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64 https://doi.org/10.1017/S0017089500031268
  22. C. A. McCarthy, $c_\rho$, Israel J. Math. 5 (1967), 249-271 https://doi.org/10.1007/BF02771613
  23. V. Rakocevic, On one subset of M. Scechter's essential spectrum, Mat. Vesnik 5 (1981), no. 4, 389-391
  24. V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919
  25. C. Schmoeger, The spectral mapping theorem for the essentail approximate point spectrum, Collquium Math. 74 (1997), 167-176
  26. A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), no. 1, 91-106 https://doi.org/10.1007/BF01332494
  27. A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143-150
  28. A. Uchiyama and S. V. Djordjevic, Weyl's theorem for p-quasihyponormal operators (preprint)

Cited by

  1. Weyl Type Theorems for Left and Right Polaroid Operators vol.66, pp.1, 2010, https://doi.org/10.1007/s00020-009-1738-2
  2. Browder-type Theorems and SVEP vol.8, pp.3, 2011, https://doi.org/10.1007/s00009-010-0085-5
  3. WEYL'S THEOREM FOR CLASS A(k) OPERATORS vol.50, pp.01, 2008, https://doi.org/10.1017/S0017089507003904
  4. A Unifying Approach to Weyl Type Theorems for Banach Space Operators vol.77, pp.3, 2013, https://doi.org/10.1007/s00020-013-2097-6