References
- P. Aiena, Classes of operators satisfying a-Weyl's theorem, Studia Math. 169 (2005), no. 2, 105-122 https://doi.org/10.4064/sm169-2-1
- P. Aiena, C. Carpintero and E. Rosas, Some characterizations of operators sat- isfying a-Browder's theorem, J. Math. Anal. Appl. 311 (2005), no. 2, 530-544 https://doi.org/10.1016/j.jmaa.2005.03.007
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Oper- ator Theory 13 (1990), no. 3, 307-315 https://doi.org/10.1007/BF01199886
- M. Cho and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integral Equations Operator Theory 53 (2005), 497-508 https://doi.org/10.1007/s00020-004-1332-6
- L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288 https://doi.org/10.1307/mmj/1031732778
- S. V. Djordjevic and Y. M. Han, Browder's theorem and spectral continuity, Glasgow Math. J. 42 (2000), no. 3, 479-486 https://doi.org/10.1017/S0017089500030147
- B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), 203- 217
- B. P. Duggal, Weyl's theorem for totally hereditarily normaloid operators, Rend. Circ. Mat. Palermo (2) 53 (2004), no. 3, 417-428 https://doi.org/10.1007/BF02875734
- T. Furuta, Invitation to Linear Operators, Taylor and Francis, London, 2001
- T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988
- R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124 https://doi.org/10.1090/S0002-9947-97-01881-3
- H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982
- I. H. Jeon, Weyl's theorem and quasi-similarity, Integral Equations Operator Theory 39 (2001), no. 2, 214-221 https://doi.org/10.1007/BF01195818
- I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc. 41 (2004), no. 4, 617-627 https://doi.org/10.4134/JKMS.2004.41.4.617
-
I. H. Jeon and I. H. Kim, On operators satisfying
$T*\midT^2\midT\geqT*\midT^2\midT$ , Lin. Alg. Appl. (to appear) - I. H. Jeon, J. I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity, Math. Ineq. Appl. 6 (2003), no. 2, 309-315
- K. B. Laursen and M. N. Neumann, Introduction to local spectral theory, Claren- don Press, Oxford, 2000
- W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), 319-331 https://doi.org/10.1007/BF01203773
- W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138
- W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64 https://doi.org/10.1017/S0017089500031268
-
C. A. McCarthy,
$c_\rho$ , Israel J. Math. 5 (1967), 249-271 https://doi.org/10.1007/BF02771613 - V. Rakocevic, On one subset of M. Scechter's essential spectrum, Mat. Vesnik 5 (1981), no. 4, 389-391
- V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919
- C. Schmoeger, The spectral mapping theorem for the essentail approximate point spectrum, Collquium Math. 74 (1997), 167-176
- A. Uchiyama, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), no. 1, 91-106 https://doi.org/10.1007/BF01332494
- A. Uchiyama, Weyl's theorem for class A operators, Math. Inequal. Appl. 4 (2001), no. 1, 143-150
- A. Uchiyama and S. V. Djordjevic, Weyl's theorem for p-quasihyponormal operators (preprint)
Cited by
- Weyl Type Theorems for Left and Right Polaroid Operators vol.66, pp.1, 2010, https://doi.org/10.1007/s00020-009-1738-2
- Browder-type Theorems and SVEP vol.8, pp.3, 2011, https://doi.org/10.1007/s00009-010-0085-5
- WEYL'S THEOREM FOR CLASS A(k) OPERATORS vol.50, pp.01, 2008, https://doi.org/10.1017/S0017089507003904
- A Unifying Approach to Weyl Type Theorems for Banach Space Operators vol.77, pp.3, 2013, https://doi.org/10.1007/s00020-013-2097-6