References
- V. Bentkus and F. Gotze, The Berry-Esseen bound for Student's statistic, Ann. Probab. 24 (1996), no. 1, 491-503 https://doi.org/10.1214/aop/1042644728
- M. Csorgo, Z. Y. Lin, and Q. M. Shao, Studentized increments of partial sums, Sci. China Ser. A 37 (1994), no. 3, 265-276
- M. Csorgo, B. Szyszkowicz, and Q. Y. Wang, Donsker's theorem for self-nor- malized partial sums processes, Ann. Probab. 31 (2003), no. 3, 1228-1240 https://doi.org/10.1214/aop/1055425777
- W. Feller, An Introduction to Probability and Its Applications. Vol. I, 3rd edn., Wiley & Sons, Inc., New York, 1968
- E. Gine, F. Gotze, and D. M. Mason, When is the Student t-statistic asymptoti- cally standard normal?, Ann. Probab. 25 (1997), no. 3, 1514-1531 https://doi.org/10.1214/aop/1024404523
- P. S. Griffin, Non-classical law of the iterated logarithm behaviour for trimmed sums, Probab. Theory Related Fields 78 (1988), no. 2, 293-319 https://doi.org/10.1007/BF00322025
- P. S. Griffin and J. D. Kuelbs, Self-normalized laws of the iterated logarithm, Ann. Probab. 17 (1989), no. 4, 1571-1601 https://doi.org/10.1214/aop/1176991175
- M. Hahn and J. Kuelbs, Universal asymptotic normality for conditionally trimmed sums, Stat. Prob. Lett. 7 (1988), no. 1, 9-15 https://doi.org/10.1016/0167-7152(88)90079-X
- M. Hahn, J. Kuelbs, and D. C. Weiner, A universal law of the iterated logarithm for trimmed and censored sums, Lecture Notes in Math. 1391, Springer, Berlin, 1989
- Z. Y. Lin, The law of the iterated logarithm for the rescaled R=S statistics without the second moment, J. Compt. Math. Appl. 47 (2004), no. 8-9, 1389-1396 https://doi.org/10.1016/S0898-1221(04)90131-9
- Z. Y. Lin, A self-normalized Chung type law of the iterated logarithm, Theory Probab. Appl. 41 (1996), no. 4, 791-798
- B. Mandelbort, Limit theorems on the self-normalized range for weakly and strongly dependent processes, Z. Wahrsch. Verw. Gebiete 31 (1975), 271-285 https://doi.org/10.1007/BF00532867
- Q. M. Shao, Recent developments on self-normalized limit theorems. In: As- ymptotic methods in probability and statistics (editor B. Szyszkowicz) (1998), 467-480
- W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974