DOI QR코드

DOI QR Code

LIMIT CYCLES IN A CUBIC PREDATOR-PREY DIFFERENTIAL SYSTEM

  • Published : 2006.07.01

Abstract

We propose a cubic differential system, which can be considered a generalization of the predator-prey models, studied by many authors recently (see [18, 20], for instance) The properties of the equilibrium points, the existences, nonexistence, the uniqueness conditions and the relative positions of the limit cycles are investigated. An example is used to show our theorems are easy to be used in applications.

Keywords

References

  1. G. I. Bell, Predator-prey of equations simulating an immune response, Math. Bioscience 16 (1973), 291-314 https://doi.org/10.1016/0025-5564(73)90036-9
  2. L. A. Cherkas and L. I. Zhilevich, Some test for the absence or uniqueness of limit cycles, Differencial nye Uravnenija 6 (1970), 1170-1178
  3. J. Cronin, Differential Equations, Introduction and Qualitative Theory, Marcel Dekker, New York, 1994
  4. L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), no. 3, 449-497 https://doi.org/10.1007/PL00005798
  5. X. C. Huang, Limit cycles in a continuous fermentation model, J. Math. Chem. 5 (1990), no. 3, 287-296 https://doi.org/10.1007/BF01166359
  6. X. C. Huang, Uniqueness of limit cycles in a predator-prey model simulating an im- mune response, Internat. J. Systems Sci. 22 (1991), no. 3, 579-585 https://doi.org/10.1080/00207729108910634
  7. X. C. Huang and S. Merrill, Conditions for uniqueness of limit cycles in general predator-prey systems, Math. Biosci. 96 (1989), no. 1, 47-60 https://doi.org/10.1016/0025-5564(89)90082-5
  8. X. Huang and L. Zhu, Limit cycles in a general Kolmogorov model, Nonlinear Anal. Theory 60 (2005), no. 8, 1393-1414 https://doi.org/10.1016/j.na.2004.11.003
  9. X. Huang and L. Zhu, A study of a general Kolmogorov model, J. Yangzhou Polytechnic University 8 (2004), no. 1, 20-32
  10. Y. Ilyashanko and S. Yakovenko, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995
  11. E. Kuno, Mathematical models for predator-prey interaction, Advances in Eco- logical Research 16 (1987) 252-265
  12. B. Y. Li and Z. F. Zhang, A note on a result of G. S. Petrov about the weakened 16th Hilbert problem, J. Math. Anal. Appl. 190 (1995), no. 2, 489-516 https://doi.org/10.1006/jmaa.1995.1088
  13. R. M. May, Limit cycles in predator-prey communities, Science 177 (1972) 900- 902 https://doi.org/10.1126/science.177.4052.900
  14. R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, Princeton, NJ, 1974
  15. S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci. 182 (2003), no. 2, 151-166 https://doi.org/10.1016/S0025-5564(02)00214-6
  16. Y. X. Qian, On Integral Surfaces Defined by Ordinary Differential Equations, Northwest University press, Xian, 1985
  17. R. Roussaire, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Prob- lem, Springer-Verlag, New York, 1998
  18. C. Shen and B. Q. Shen, A necessary and sufficient condition of the existence and uniqueness of the limit cycles for a class of prey-predator system with spasrse effect, J. Biomath. 18 (2003), no. 2, 207-210
  19. Y. Q. Ye, S. L. Wang, and X. A. Yang, Theory of Limit Cycles, Amer. Math. Soc. Providence, R. I., 1986
  20. J. B. Zheng, Z. X. Yu, and J. T. Sun, Existence and uniqueness of limit cycle about prey-predator system with sparse effect, J. Biomath. 16 (2001), no. 2, 156- 161

Cited by

  1. Limit cycles for two families of cubic systems vol.75, pp.18, 2012, https://doi.org/10.1016/j.na.2012.07.012
  2. Stability and bifurcation in two species predator–prey models vol.12, pp.1, 2011, https://doi.org/10.1016/j.nonrwa.2010.06.023
  3. Multi-dynamics of travelling bands and pattern formation in a predator-prey model with cubic growth vol.2016, pp.1, 2016, https://doi.org/10.1186/s13662-016-0994-0