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THE OPERATIONAL CALCULUS FOR
A MEASURE-VALUED DYSON SERIES

Kun Sik Ryu

ABSTRACT. Recently, we proved the existence theorem of measure-
valued Feynman-Kac formula and showed that it satisfied Volterra’s
integral equation. In this paper, we establish the operational cal-
culus for a measure-valued Dyson series and give some examples
related to the measure-valued Dyson series.

1. Introduction

In 1951, for the sake of a solution of Schriédinger’s wave equation,
Feynman suggested a special integral, so called the Feynman integral
([2]) and he gave heuristic formulation for an operational calculus for
noncommuting operators ([3]). Because his integral was not perfect
from the mathematical point of view, Cameron and Storvick introduced
an operator-valued Feynman integral which was make sense mathemat-
ically and they investigated some properties for the integral ([1]). In
1988, Johnson and Lapidus established the operational calculus for the
Cameron and Storvick’s Feynman integral ([4]).

In 2002, we presented some definitions and theories for an analogue
of Wiener measure which was a kind of generalization of the classical
Wiener measure and we derived a measure-valued measure V,, from the
concept of the analogue of Wiener. We also established a measure-valued
Feynman-Kac formula using the concept of Bartle integral with respect
to V,, ([5]). Recently, we proved the existence theorem of a measure-
valued Dyson series, the generalized Feynman-Kac formula and its sta-
bility theorems, a kind of convergence theorem for the Bartle integral
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with respect to V, ([6]).

In this paper, we establish the operational calculus for a measure-
valued Dyson series and give some examples related to the measure-
valued Dyson series. In the next section, we introduce some notations,
definitions, and basic facts which are needed to understand the last sec-
tion.

2. Preliminaries

Here, we introduce some notations, definitions and facts which are
needed to understand this note.

(A) Let R be the real number system. For a natural number n, let
R™ be the n-times product space of R. Let B(R) be the set of all Borel
subsets of R and let m be the Lebesgue measure on the measurable
space (R, B(R)).

(B) For 7 in R, let &, be the Dirac measure concentrated at 7 with
total mass one. Let M(R) be the space of all finite complex-valued
countable additive measures on (R, B(R)). For u in M(R) and for F in
B(R), the total variation |u|(E) on F is defined by

(2.1) |ul(E) = Supz |u(Es),

where the supremum is taken over all finite sequences (E;) of disjoint
sets in B(R) with U, E; = E. Let B be a complex Banach space and let
B* be the dual space of B. For a B-valued countably additive measure
v on (X, B) and for F in B, the semivariation ||v]|(E) of v on E is given
by

(2.2) l7||(E) = sup{|z*v|(F)| z*v is in B* and ||z*||p+ < 1},

where |z*v|(E) is the total variation on E of z*v.

(C) For two real numbers a and b with a < b, let Cla,b] be the
space of all real-valued continuous functions on a closed bounded interval
[a,b] with the supremum norm || - ||o. For § = (sg,$1,...,8,) with
a=38) <8 <8< <8y, =>b,let I7: Cla,b] — R**! be a function
with

(2.3) Iy(x) = (z(s0), z(s1), .- -, x(sn)).

For B; (j =0,1,2,...,n) in B(R), the subset I7( =0 Bj) of C[a,b] is

called an interval. Let 7 be the set of all intervals. For ¢ in M(R), we



The operational calculus for a measure-valued Dyson series 705

let
mg,b(IS:I(H B))) =/ [/ W(n+ 1; 8 ug, u1,-..,Un)
=0 Bo “JI17=1 Bj
(2.4) "
d H mL(ula Uz, ) un)] dSO(UO),
Jj=1
where

Then there exists a unique complex-valued measure wf:,’b on (Cla,b],
B(Cla, b])) such that wa’b(I) = mi’b(I) for all I in Z.
By the change of variable formula, we have the following theorem.

THEOREM 2.1 (The Wiener integration formula). If f is a complex-
valued Borel measurable function on R"*! and § = (sg, s1,...,5,) is a
vector in R*! with a = sp < s1 < --- < 8, = b then the following
equality holds.

/ f(z(s0),z(s1), ..., z(sn)) dwg’b(x)
Cla,b]

(26) = R f(’U,O,Ul, e ,’I,Ln)W(’I’L-i- 1; §, U, U1, - .- ,un)

d(H my, X (P)((Ul,’u,z, v ,'U,n),U()),
j=1

where = means that if one side exists then both side exist and two values
are equal.

(D) Let X : Cla,b] — R be a function with X(z) = z(b). For ¢ in
M(R) and for B in B(C|a,b]), we let

(2.7) Vet (B)(B) =wg® (BN X~H(E))

for E in B(R). Then V3 * is a measure-valued measure on (Cla, b], B(Cla,
b)) in the total variation norm sense, for B in B(C|a,b]), ||V<§’b(B)|[ <
4|p|(R) and for B in B(Cla, b)) with |wg’(B)| = 0, V2?(B) is a zero mea-
sure on (R, B(R)). For B in B(C|a, b]), letting V**(B) : M(R) — M(R)
with [V22(B)](p) = Vg’b(B), V®®(B) is a bounded linear operator.
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From [5, Theorem 4.4, p.4934], we can find the following theorem.

THEOREM 2.2. Let f be a complex-valued Borel measurable function

on R"1 and let 8= (sg, s1,...,5,) be a vector in R™! with a = s¢ <
81 < 83 < --- < sp="b. Let p bein M(R). If f(ug,us,us,...,u,)W(n+
1; 8 uo, u1,u2, - - - , un) 18 [o| X[ [;—; my-integrable then a function F(z) =

f(z(s0),z(s1),...,%(sn)) is Vgg’b—Bartle integrable on Cla,b] and for E
in B(R),

(2.8)
(Ba)- [ P@avsw)]e)

:/E{/Rn_l(/Rf(uo,ul,...,un)W(n+1;§;u0,u1,~-,un)d<P(U0)>
n—1

d H mr(uy, uz, . .. ,Un—l)}dmL(un)-
j=1

(E) Let RM(R) be the space of all finite complex-valued measures
pon (R, B(R)) that are absolutely continuous with respect to my. For
¢ in L*(R,mpr), we let

(2.9) (Mo (u)](E) = [E I 0(6) dmo (),

dmy,

for E in B(R) and for p in RM(R). Then Mpy is an operator from
RM(R) into itself by the bound ||f|l. For s > 0, let S5 : RM(R) —
RM(R) be an operator such that

210 [8.6018) = = [ { [ exp(~E5 ) dmato) hautoy
. s\§ 5rs Je U g 9 L e
for E in B(R). It is not hard to show that S; is a bounded linear operator
and the operator norm ||S,|| of S; is less that or equal to one.

For s > 0, for ¢ in M(R), for a Borel measurable |p|-essentially
bounded function ¢ on (R, B(R)) and for £ in B(R), we let
(2.11)

760 01(E) = —— [ [ [ o eo{~ L5 L dmi(w)] .

Let ¢ be in M(R) and let 7 = p + v be a complex-valued Borel mea-
sure on [a, b] such that u is a continuous part of 7 and v = 2 p=0 CpOrps
where a = 79 < 71 < T2 < -+ < T, = band ¢(p =0,1,2,...,n) are
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complex numbers. Let 6 be a complex-valued Borel measurable function
on [a,b] x R such that

(2.12) e = [ 108, Mo s

a,
is finite where ||0(a, -)||p:00 is the |p|-essentially supremum norm for a
function 0(a, §) of € and ||0(s, )]0 (@ < s < b) is the my-essentially
supremum norm for a function 6(s,€) of £&. By [6, Theorem 3.2.], we
have the following theorem.

THEOREM 2.3. Under the notation in above, let g be an analytic
function with the radius of convergence less than ||6||p;00,1,, S8y ¢(2) =

S _oamz™. Then g(f[a 5 0(5,%(s)) dn(s)) is V2P_Bartle integrable on

m=0

Cla,b] and for E in B(R),

[(Bo) - /C o[ sz ane)aver)] e)
ey T sy

m=0 110+Q1+ +gnt1=m L1p=0 p- Jit+jz++in=aqn41
(2.13)
/ [(Ln© Lnr 0+~ 0 Ly)(T(s1.1, 0, 6(a, J©))] (E)
qn+1 1311925
n Jz
(HH#) SL1s- -+ Sngn)-
i=1j=1
Moreover,

o) [ o[ 06 a(e) dnts)) avi)|

< 4lol® [Z aml 1010 1)-

Here, for k=2,...,n,
(2.15)
Li = My(ryo 057 —sy. 5, © Mo

(2.14)

OSS OMO(sk 1)O‘S’s;C 1—5k,07

Sk,jx,) K.k —Sk,dp,—1©

and

°© Ssl,n_sl,jl—l o Me(sl,l)'

(216) L1 = Mg(.,.l)ql.o STI_Sl,j1 o Mg(

51,51)
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And, for nonnegative integers q and j1,jg,...,Jn Withqg = j1+jo+---+
Jn, let
(2.17)
b
Z;jl,jg,...,jn ={(81,1? 81,2) e ’Sl,jl ) 82,17 s 7sn—1,jn_1 ) sn,l, ey Sn,jn)l
To=0<81,1 < - <815, <T2 <821 <+

"'<Tn—1<Sn’l<"‘<3n’jn<7-n=b}.

3. The operational calculus for a measure-valued Dyson se-
ries

In this section, we investigate Feynman’s operational calculus for a
measure-valued Dyson series.

Throughout this section, let ¢; and ¢3 be two real numbers with 0 <
t; < t2 and let ¢ be in M(R).

THEOREM 3.1. Let (sg, 51,82, . .-, 8mn) be in R with 0 < 5o <
81 < - < 8pm =t < Smy1 < -+ < Sm4n = ta. Let fi1 and fo
be two complex-valued Borel measurable functions on R™*! and R™,
respectively such that

(3.1) fr(ug, iy .., um )W (m + 15 (80, S1,- -+, Sm); U0, ULy - - - » Uy
is [¢p| x [T}, mi-integrable on R™*! and

fl(uo’ cee ,um)f2(um+1, cee ,um+n)
(32) x W(m + 1; ;

n -+ ) (80, . 73m+n+1)a Ug, U1, - .. ,Um+n)
is || x ]_[;":ﬁ” my-integrable on R™*" 1, Then
(3.3) Fi(z) = fi(z(s0),®(51), - - Z(8m))
is Vg "_Bartle integrable on C0,t1],

(34)  Fl(2) = filz(s0) 2(s1)s. .- 2(5m)) fal@(mtn)s - 2(Smim))
is V2 Bartle integrable on C|0,t2) and

(3.5) Fa(z) = f2(z(sm+1), T(Sm+2), - - s T(Smtn))
is V;l’t2-Bartle integrable on C|t1,t2], where

= _ . 0,1
(3.6) w5 = [(Ba)- [ F@anm]e)
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for E in B(R). Moreover,
(3.7) (Ba)— / F(z)dVo"(z) = (Ba) - / Fy(z) dV3 "™ (x).
Clo,ts] Clta,t2]

Proof. From Theorem 2.2, Fy and F are Vo™ and V,2'?-Bartle inte-
grable on C[0,t1] and C([0, t], respectively. By Theorem 2.2, the Radon-
Nikodym derivative d@/dmy, exists and

(3.8)
dg
y —(um) = fuo,ul, o Um)W(m + 15 (0, 81, - - -, Sm);
my, Rm— 1
m—1
UO)ulw--aum)d(P(uO)) d H mp(u1, U2, ..., Un-1).
j=1

So, for E in B(R),

(50~ [, Fee]®

€]
/ / / fl anuh -7um)f2(um+1,um+2,---yum+n)
Rm+n 1

m+n+1 (80731a -a3m+n) anula"',um+n) d()o(u()))
m+n—1,
d H mL(ul,uz,...,um+n_1)}dmL(um+n)
j=1
2
(——)/ [/ f2(um+1,um+2,~'-,um+n)
(3.9) ERT
W(n +1; (3m7 Sm+ly--- 7Sm+'n);um7um+1, s ,Um+n)
{/ (/ fi(uo,ua, oo um)W(m + 15 (s0, 81, - - - 5 $m);
Rm~—1 R
m—1
U, Uy - -« , Um,) d(p(uo)) d H mL(ul,ug,...,um_l)}
j=1
m+n—1
d H mL(Umaum+l>--- >Um+n—1):' dmL(Um+n)

j=m

3

(=)/{/ (/ f2(um+1,um+27-'->um+n)
E NJRn-1 MR
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W(n + 17 (3m7 Sm41s- -+ 5m+n); Um, Um+1y - - - aum+n) d@(um))
m+n—1 '

d H mL(Um-{-la cen ,um+n—1)} dmL(um+n)-
j=m+1

Step (1) results from Theorem 2.2. From Fubini’s theorem, we have Step
(2). Using the Radon-Nikodym derivative d@/dmr, we obtain Step (3).

Since the integral [(Ba) — fc[o o] )dV0 2(5)(E) exists, f2(tmi1,

s Umpn)W (4 15 (Smy -y Smgn)s Ums - -+ Uman) 18 @] X [T7m m-

1ntegrable, so F is th’tz Bartle integrable on Clt1,ts] and

10) B~ [ F@aview = 8o~ [ B

[t1,t2]

holds. (]

REMARK 3.2. Let ¢ be in M(R), let P; : C[0,t2] — C]0,%1] be a func-
tion with [Py (z)](s) = z(s) for 0 < s < t1 and let P, : C[0,t2] — Clt1,%2)
be a function with [P2(x)](s) = z(s) for ¢; < s < tp. Then by Theorem
3.1, V"3 (I) = V2™ (Py(I)) for I in T where ¢ = Vi"'(Py(I)). But
it is not true always that V.'2(B) = V;l’tz (Py(B)) for B in B(C|0,t5])
where ¢ = Vq(,)’t1 (P1(B)). Because, putting ¢ = &, t1 = 1,t0 = 2
and B = {z in C[0,tg] | either (1) > 0 and z(2) > 0 or (1) < 0 and
z(2) < 0 holds}, B in B(C[0,2)), [Vg(B)(R) = 1, Vo' (P(B)) =
V21 (C0,1]) = $1(8o), the standard normal distribution, and

(B11) Vg5 (P2(BNI(R) = [S1 0 S1(60)](R) = [S2(60)](R) = 1.

Here, we establish the operational calculus for a measure-valued Dy-
son series, the main theorem in this note.

THEOREM 3.3. Under the assumptions in Theorem 3.1, let g(z) =
exp(z) and let n = p+ v be a complex-valued Borel measure on [0, t5]
such that p is a continuous part of n and v = Zzlfn cpdr, where 0 =
<M< < Tym=1%t <Tpy1 <+ < Tpyn =tz and ¢p (p =
0,1,2,...,m+n) are complex numbers. Then exp(f[o’tl] 0(s,z(s)) dn(s)),

exD( i, 1,7 0, z(s)) dn(s)) and exp(fiy ., 0(s, 2(s)) dn(s)) are all yoh_
Sgl,tz_ and Vg:tz—Bartle integrable of x on C|0,t1], C[t1,t2] and C[0, t3],
respectively, where

(3.12) ¢ = (Ba) — /C[O u exp(/[0 o (s, z(s)) dn(s)) dV£7t1 (z).
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Moreover,

(Ba) — /C " exp /M (s, 2(s)) dn(s) ) AV ()

=(Ba) — /C[tl,tz] exp(/(n,tz] 0(s,z(s)) dn(g)) dV£17t2 ().

Proof. From Theorem 2.3, we have that exp(f[0 . (s, xz(s))dn(s))
and exp( f[O,tz] 0(s, z(s)) dn(s)) are VO™~ and V£ *2_Bartle integrable on
C[0,t1] and C|0, 2], respectively. So, putting

(3.14) ¢ = (Ba) — /C[O u exp (/[0 o 0(s,z(s)) dn(s)) dV£’t1 (x),

@ is well defined in M(R) and exp(f(tl’tz] 6(s,z(s))dn(s)) is Vél’h—Bartle

(3.13)

integrable on C[t1,ts]. For nonnegative integers q, k and j1, j2, - - -, Jm+n
withg=j1+jo+ -+ Jm and k = jim41 + Jmt2 + - + Im+n, let
on
@GI1sd2sadm
"_‘{(sl,la 81,25--+381,51,52,1,- - -, Sm—1,5m-1> Sm,1y--- ?Sm,jm)l
(3.15) =0= 81,0 <811 <812 < < 81,5 S, ju+1 =T

=820 < 82,1 <822 < <824, < 824,41 = T2 =830

< < Smgm < Smgmtl = Tm = tl},

t1,ta )
kijm41yJmtn
={(Sm+1,1, e Sm L dma1 SMA2, 1 - - s SMA2,Gmg20 0 0
(3.16) Smtnjmin )1 = Tm = Sma1,0 < Sma1,1 <+

< Sl gmsr < Smtljmer+l = Tm+1l = Sm+2,0
<Sm+2,1 <0 < SmAnjmin
< SmAnjmintl = Tman = t2}

and
(3.17) A = A0 x A2

q+k;j1,9250- 0 Jm4n 4;31,325--2Jm kijm41yeesimtn”
Then by Theorem 3.1. and Fubini’s theorem,

(Ba) — /C[O,tg] exp(/[o,h] 0(s, z(s)) d77(8)> dvg,tz(:r)

m4+n cq_j

>y odaes oy

1=0 go+a1++amint1=t 11370 2 jitjot- +imin=gmin+1

(3.18)
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m+n  Ji
(Ba) — / /Ot 0(my,x { H (H@ (84,5, (8i5) )
Ot JBg 2 o itimim =1 j=1
m+n Jji
0(5i5+1, T(Si j+1)) } (H Hu) S1,1s+ -+ SmAn,men) AV 2 (T)
i=1 j=1

o oo m+n _dj
- )3 > s
= m+n

11=00=0go+q1++gm+q=l1 g1+ +gmn+k=ly 115=0 %'

> Yo e [ e o

7 +]2++Jm=q jm+1 +"'+jm+n """

{ﬁ(ﬁ 0(sij, w(sz‘,j))) 0(sigi+1, w(sz',jm))"’}

i=1 j=1

m  Ji

H H p,) (81,15 -+ Smjm)

i=1j=1

d

TN

m+n

ota { 11 (H9 (83, Su)) (Si,ji+1,x(8z‘,ji+1))q"}

kijm41sdmen t=m+l j=1

N

mtn  Jji
d( 11 H”)(Smﬂ’l""73m+n,jm+n)dvug’t2(:c)
i=m+1 j=1
Hm+n ]

-2y % >

H’"+"q
012=0go+q1+ - +gm+a9=l1 g1+ +qmtn+k=l> =0 H°

Z Z (Ba) - /C[tl,t2] / £1,%2

Jitiet+Iim=q fms1++Imin=k kJ M1 dmtn

m+n  fi

{ TI (TT6Csis, (56000511, 2(s1542))% }

i=m+1 j=1
m+n  Ji

d( H Hu)(sm“Ll’l"'"Sm+n,jm+n)dV1/f1’t2(x),

~i=m+1 j=1

Here

(319) '(/](q,]la cee 7.7m) =(Ba) - / / ot 9(7-07 l‘(TO))qO
Cl0,t] A‘q;’ji
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{ﬁ (ﬁ (s> 0(50)) ) Blsigr1, 2(s1541))" |

i=1 j=1
m i
d(H H u) (81,15 -+ - » Smyjim ) dVlg’t1 (z).

i=1 j=1
By the essentially same evaluation as in the proof of Theorem 5.5 in [5],
(3.20)

Ilizoc : :
Z > HJ > Y(gd s dm)
=0go+q1++gm+g=l +17=0 %' Jitdettim=q

and

(Ba) — /C - exp( /( » 8(s, 2(s)) dn(s)) 4V ()

[’} m-n q;
= > )
- Z m-+n

12=0 gm4 1+ +@m4n+k=la L tj=m+l qJ Jma1+timtn=k

(321)  (Ba)— /M /m2 "ﬁ" (I—lesi,j,m(si,j)))

Kijm41r - dman 1 m+1 j=1

0(sijit1,2(Si5i+1)) }
m4n i

a( T TLE)Gmirts s smingmin) Ve ().

i=m+1j=1

Hence, from (D) in Section 2, we have

(Ba) - /C ot eXP( /{0 " e(s,x(s))dn(s)) v (z)
iy , , m+n 4
:Z Z J ln-}-lc Z

12=0 gm1+-+amint+k=lp 1 Lj=m+1 q] ]m+1+ A fmtn=k

m+n
(3.22) (Ba) _/C[tl o /t1 t2 H (HG 85 T 3@,])))

+1odmyn  t=m41l j=1

(855,41, ©(81,5;+1))* }
m+n  J;

d( H HN) (S'm-l-l,l, . Sm+na]m+n)dvt1’t2(w)

i=m+1 j=1
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=(Ba) —/ exp(/ 0(s, z(s)) dn(s)) dVél,tz (x),
Clt1,t2] (t1,t2]
as desired. O

REMARK 3.4. (a) Let § be a constant function on [0,t2] x R, say
8(s,u) = ¢, let n be the Lebesgue measure on [0,¢;] and let ¢ = .
Then
(3.23)

/C[O,tl] exp (/[O,tl] 0(s,z(s)) dn(s)) dVLg’ltl (z) = exp(ct1)St, (do) = @

and
ex 0(s, z(s)) dn(s) ) dVir2(z
/C[tl,tz] p(/(tlh] (~ (s)) dn( )) e (z)
3.24) exp(c(tz — 1)) St -1, (#)

— exp(ctz)Sra (60)

_ /C » exp /M (s, 2(s)) dn(s) ) V3" (2),

so, a formula, given in Theorem 3.3. holds.
(b) Taking g(z) = z in (a)

s, T O,ta = ct1.5; =
29 [ o[ 006,20 i) v @) = ensi (i) =
) |

an
(3.26)

/C[tl’tﬂ g /(tl,tﬂ (s, z(s)) dn(s)) dvjl,tg (z) = c(ty — t1)Se,—1, (V)
= c*t1(t2 — t1)St, (do).

Since fc[mtz]g(f[&tz] 0(s,z(s)) dn(s)) dV ™ (z) = ctyS:, (o), a formula,
given in Theorem 3.3. doesn’t hold for the general function g.
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