References
- S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406
- S. Bacso and B. Szilagyi, On a weakly Berwald Finsler space of Kropina type, Math. Pannon. 13 (2002), no. 1, 91-95
- S. Bacso and R. Yoshikawa, Weakly-Berwald spaces, Publ. Math. Debrecen 61 (2002), no. 2, 219-231
-
M. Hashiguchi, S. Hojo, and M. Matsumoto, Landsberg spaces of dimension two with (
$\alpha,\;\beta$ )-metric, Tensor (N. S.) 57 (1996), no. 2, 145-153 - M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, Saikawa (1986)
-
M. Matsumoto, The Berwald connection of a Finsler space with an (
$\alpha,\;\beta$ )-metric, Tensor (N. S.) 50 (1991), no. 1, 18-21 -
M. Matsumoto, Theory of Finsler spaces with (
$\alpha,\;\beta$ )-metric, Rep. Math. Phys. 31 (1992), 43-83 https://doi.org/10.1016/0034-4877(92)90005-L -
M. Matsumoto, Finsler spaces with (
$\alpha,\;\beta$ )-metric of Douglas type, Tensor (N. S.) 60 (1998), no. 2, 123-134 - M. Matsumoto and S. Numata, On Finsler space with a cubic metric, Tensor (N. S.) 33 (1979), no. 2, 153-162
-
I. Y. Lee and H. S. Park, Finsler spaces with infinite series (
$\alpha,\;\beta$ )-metric, J. Korean Math. Soc. 41 (2004), no. 3, 567-589 https://doi.org/10.4134/JKMS.2004.41.3.567 - I. Y. Lee and D. G. Jun, On two-dimensional Landsberg space of a cubic Finsler space, East Asian Math. J. 19 (2003), no. 2, 305-316
-
R. Yoshikawa and K. Okubo, The conditions for some (
$\alpha,\;\beta$ )-metric spaces to be weakly-Berwald spaces, Proceedings of the 38-th Symposium on Finsler geometry, Nov. 12-15, (2003), 54-57
Cited by
- Projectively Flat Finsler Space of Douglas Type with Weakly-Berwald (α,β)-Metric vol.18, 2017, https://doi.org/10.18052/www.scipress.com/IJPMS.18.1
- ON THE SECOND APPROXIMATE MATSUMOTO METRIC vol.51, pp.1, 2014, https://doi.org/10.4134/BKMS.2014.51.1.115
- RETRACTED: On two subclasses of -metrics being projectively related vol.62, pp.2, 2012, https://doi.org/10.1016/j.geomphys.2011.10.004