DOI QR코드

DOI QR Code

COLLAR LEMMA IN QUATERNIONIC HYPERBOLIC MANIFOLD

  • Kim, Dae-Young (SCHOOL OF MATHEMATICS SCIENCE, SEOUL NATIONAL UNIVERSITY)
  • Published : 2006.05.01

Abstract

In this paper, we show that a short simple closed geodesic in quaternionic hyperbolic 2-manifold has an embedded tubular neighborhood whose width only depends on the length of the geodesic.

Keywords

References

  1. W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical Mono- graphs, Oxford University Press, 1999
  2. J. Yueping, S. Kamiya, and J. R. Parker, Jorgensen's inequality for complex hy- perbolic space, Geom. Dedicata 97 (2003), 55-80 https://doi.org/10.1023/A:1023627324013
  3. D. Kim, Discreteness criterions of isometric subgroups for quaternionic hyperbolic space, Geom. Dedicata 106 (2004), 51-78 https://doi.org/10.1023/B:GEOM.0000033842.14743.9d
  4. D. Kim, On discrete groups of quaternionic hyperbolic motions, Phd Thesis, SNU, 2004
  5. I. Kim and J. R. Parker, Geometry of quaternionic hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 2, 291-320
  6. S. Markham and J. R. Parker, Collars in complex and quaternionic hyperbolic manifolds, Geom. Dedicata 97 (2003), 199-213 https://doi.org/10.1023/A:1023677417179
  7. R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Canad. J. Math. 39 (1987), no. 5, 1038-1056 https://doi.org/10.4153/CJM-1987-053-6