References
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315 https://doi.org/10.1007/BF01199886
-
M. Cho and T. Huruya, p{hyponormal operators for 0 < p <
$\frac{1}{2}$ , Comment. Math. Prace Mat. 33 (1993), 23-29 - M. Cho, M. Itoh, and S. Oshiro, Weyl's theorem holds for p-hyponormal oper- ators, Glasgow Math. J. 39 (1997), no. 2, 217-220 https://doi.org/10.1017/S0017089500032092
- J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), no. 2, 174-198 https://doi.org/10.1007/BF01682733
- D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153-4174 https://doi.org/10.1090/S0002-9947-96-01683-2
- J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69 https://doi.org/10.2140/pjm.1975.58.61
- P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, Inc., New York, 1988
- I. S. Hwang and W. Y. Lee, On the continuity of spectra of Toeplitz operators, Arch. Math. (Basel) 70 (1998), no. 1, 66-73 https://doi.org/10.1007/s000130050166
- I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), no. 1, 151-157 https://doi.org/10.1007/s002090000128
- K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336 https://doi.org/10.2140/pjm.1992.152.323
- J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176 https://doi.org/10.1215/S0012-7094-51-01813-3
Cited by
- THE SPECTRAL CONTINUITY OF ESSENTIALLY HYPONORMAL OPERATORS vol.29, pp.3, 2014, https://doi.org/10.4134/CKMS.2014.29.3.401