Seasonal Changes of Pigment Content and Antioxidant Capacity in Leaves of Alnus firma at Polluted Area

환경오염지에서 생육하는 사방오리나무의 색소함량 및 항산화능력의 계절변화

  • Han Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Oh Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim Jong-Kab (Faculty of Forest Science, Gyeongsang National University) ;
  • Kim Pan-Gi (Department of Forest Resources and Environment, Sangju National University)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 이재천 (국립산림과학원 산림유전자원부) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 김종갑 (경상대학교 산림자원학과) ;
  • 김판기 (국립상주대학교 산림환경자원학과)
  • Published : 2006.06.01

Abstract

To elucidate the relation of leaf development stage to the antioxidative function in leaves of Alnus firma Sieb. et Zucc. growing in polluted areas, we investigated seasonal changes of pigment content and antioxidant enzyme activities from January to June. In abandoned mine and industrial complex areas, antioxidant function against stress of trees was changed with leaf expansion, and antioxidant activity in leaves was highest in June. Among antioxidants, carotenoid, SOD and CAT were correlated with seasonal change. Carotenoid and SOD represented a positive correlation but CAT represented a negative correlation with leaf development. APX and CAT, which remove $H_{2}O_2$, had a complementary function in the antioxidant system. The lowest antioxidant activity was observed in April, and the damage level in leaves, shown as MDA content, was also lowest in April.

오염물질에 노출된 수목에서 잎의 발달 단계와 항산화 기능의 관계를 구명하기 위하여, 1월부터 6월까지 색소 함량과 항산화 활성의 변화를 조사하였다. 폐광지역과 공단지역내 수목의 스트레스에 대한 항산화 기능은 잎 발달과 함께 변화하며, 6월에 가장 높은 항산화 활성을 나타내었다. 항산화 물질 중 계절 변화와 상관을 나타내는 것은 카로테노이드, SOD 및 CAT였으나, 카로테노이드와 SOD는 정(+)의 상관을 나타냈고, CAT는 부(-)의 상관을 보였다. 또한 $H_{2}O_{2}$,를 제거하는 데 관여하는 APX와 CAT는 상호 보완적인 관계를 나타냈다. 가장 낮은 항산화 활성을 나타내는 시기는 4월이었으며, 이 시기에는 스트레스로 인해 피해 수준도 낮았다.

Keywords

References

  1. Alvarez, E., M. L. Fernandez Marcos, C. Vaamonde, and M. J. Fernadez-Sanjurjo, 2003: Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. The Science of The Total Environment 313, 185-197 https://doi.org/10.1016/S0048-9697(03)00261-4
  2. Asada, K., M. Takahashi, and M. Nagate, 1974: Assay and inhibitors of spinach superoxide dismutase. Agricultural Biological Chemistry 38, 471-473 https://doi.org/10.1271/bbb1961.38.471
  3. Beauchamp, C., and I. Fridovichi, 1971: Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44, 276-297 https://doi.org/10.1016/0003-2697(71)90370-8
  4. Bowler, C., M. van Montagu, and D. Inze, 1992: Superoxide dimutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43, 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  5. Brand-Williams W., 1995: Use of a free radical method to evaluate antioxidant activity. Food Science Technology 28, 25-30
  6. Carlberg, I., and B. Mannervik, 1985: Glutathione reductase. Methods in Enzymology 113, 485-490
  7. Cartelat, A., Z. G. Cerovic, Y. Goulas, S. Meyer, C. Lelarge, J. L. Prioul, A. Barbottin, M. H. Jeuffroy, P. Gate, G. Agati, and I. Moya, 2005: Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research 91, 35-49 https://doi.org/10.1016/j.fcr.2004.05.002
  8. Fossati P, L. Prencipe, and G. Berti, 1980: Use of 3,5- dichloro-2-hydroxy benzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. The Clinical Chemistry Methodology 26, 227-231
  9. Foyer, C. H., M. Lelandais, and K. J. Kunert, 1994: Photooxidative stress in plants. Physiologia Plantarum 92, 696-717 https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  10. Halliwell B., 1987: Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chemistry and Physics of Lipids 44, 327-340 https://doi.org/10.1016/0009-3084(87)90056-9
  11. Han, S.-H., J.-O. Hyun, K.-J. Lee, and D.-H. Cho, 1998: Accumulation of heavy metals(Cd, Cu, Zn, and Pb) in five tree species in relation to contamination of soil near two closed zinc-mining sites. Jour. Korean For. Soc. 87, 466-474
  12. Han, S.-H., J.-C. Lee, S.-S. Jang and P.-G. Kim, 2004: Composted sewage sludge can improve the physiological properties of Betula schmidtii grown in tailings. Journal of Plant Biology 47: 99-04 https://doi.org/10.1007/BF03030638
  13. Heath, R. L., and L. Parker, 1968: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198 https://doi.org/10.1016/0003-9861(68)90654-1
  14. Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1332-1334
  15. Hossner, L. R., and F. M. Hons, 1992: Reclamation of mine tailings. Advances in Soil Science. Vol. 17. (Eds.) B.A. Stewart. Springer-Verlag, New York, 311-348
  16. Jiang, C. D., P. M. Li, H. Y. Gao, Q. Zou, G. M. Jiang, and L. H. Li, 2005: Enhanced photoprotection at the early stages of leaf expansion in field-grown soybean plants. Plant Science 168, 911-919 https://doi.org/10.1016/j.plantsci.2004.11.004
  17. Jung S., 2004: Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science 166, 459-466 https://doi.org/10.1016/j.plantsci.2003.10.012
  18. Larson R. A., 1988: The antioxidants of higher plants. Phytochemistry 27, 969-978 https://doi.org/10.1016/0031-9422(88)80254-1
  19. Larson R. A., 1995: Defenses against oxidative stress. Archives of Insect Biochemistry and Physiology 29, 175-186 https://doi.org/10.1002/arch.940290207
  20. Lee, J.-C., S.-H. Han, S.-S. Jang, K.-J. Cho, and Y.-Y. Kim, 2002: Effects of ozone uptake rate on photosynthesis and antioxidant activity in the leaves of Betula species. Korean Journal of Agricultural and Forest Meteorology 4, 72-79
  21. Lee, J.-C., S.-H. Han, P.-G. Kim, S.-S. Jang, and S.-Y. Woo, 2003a: Growth, physiological responses and ozone uptake of five Betula species exposed to ozone. Korean Journal of Ecology 26, 165-172 https://doi.org/10.5141/JEFB.2003.26.4.165
  22. Lee, J.-C., S.-H. Han, S.-S, Jang, P.-G. Kim, J.-S. Hur, and K.-J. Yum, 2003b: Physiological tolerance of native tree species in abandoned coal mine spoils. Korean Journal of Agricultural and Forest Meteorology 5, 172-178
  23. Logan, T. J., 1992, Chemical degradation of soil. Advances in Soil Science. Vol. 17. (Eds.) Stewart B. A., Springer- Verlag, New York, 13-35
  24. Minkov, I. N., G. T. Jahoubjan, I. D. Denev, and V. T. Toneva, 1999, Photooxidative stress in higher plants. Handbook of Plant and Crop Stress, 2nd edition. (Eds.) M. Pessrakli, Marcel Decker, New York, Basel. 499-525
  25. Nakano, Y., and K. Asada, 1981: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22, 867-880
  26. Prochazkova, D., R. K. Sairam, G. C. Srivastava, and D. V. Singh, 2001: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Science 161, 765-771 https://doi.org/10.1016/S0168-9452(01)00462-9
  27. Schoner, S., and G. H. Krause, 1990: Protective systems against active oxygen species in spinach: response to cold acclimation in excess light. Planta 180, 383-389 https://doi.org/10.1007/BF01160394
  28. Siefermann-Harms D., 1987: The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum 69, 561-568 https://doi.org/10.1111/j.1399-3054.1987.tb09240.x
  29. Zhao, D., K. R. Reddy, V. G. Kakani, and V. R. Reddy, 2005: Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy 22, 391- 403 https://doi.org/10.1016/j.eja.2004.06.005