출혈성 및 내독소 투여로 유발된 급성폐손상에서 heparin의 항염증효과

Antiinflammatory Effects of Heparin in Hemorrhage or LPS Induced Acute Lung Injury

  • 김재열 (중앙대학교 의과대학 내과학교실) ;
  • 최재철 (중앙대학교 의과대학 내과학교실) ;
  • 이영우 (중앙대학교 의과대학 내과학교실) ;
  • 정재우 (중앙대학교 의과대학 내과학교실) ;
  • 신종욱 (중앙대학교 의과대학 내과학교실) ;
  • 박인원 (중앙대학교 의과대학 내과학교실) ;
  • 최병휘 (중앙대학교 의과대학 내과학교실)
  • Kim, Jae Yeol (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Jae Chul (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Lee, Young Woo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Jung, Jae Woo (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Shin, Jong Wook (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Park, In Won (Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Byoung Whui (Department of Internal Medicine, Chung-Ang University College of Medicine)
  • 투고 : 2005.11.28
  • 심사 : 2006.01.04
  • 발행 : 2006.01.30

초록

배경 : 급성 폐손상은 폐내, 외의 원인질환들에 의해 폐포-모세혈관의 투과성이 증가하며, 폐부종에 의해 급성 저산소성 호흡곤란이 유발되는 증후군이다. 헤파린은 항응고작용 외에 자체적으로 항염증효과를 가지고 있으나, 염증성질환에 헤파린을 투여하면 출혈성 합병증이 발생하기 때문에 실제로 임상에서 이용하는데 제약이 있다. 하지만 헤파린에서 2-O와 3-O sulfate를 제거하면, 항응고 효과가 제거되고 항염증효과는 지니고 있는 비항응고성 헤파린 (nonanticoagulant heparin)으로 변화한다. 본 연구에서는 흰쥐에게 내독소 (LPS)를 투여하거나, 출혈성 쇼크를 일으켜서 유발된 급성폐손상에서 비항응고성 헤파린의 치료효과를 살펴보았다. 방법 : 각 군당 5 마리 이상의 흰쥐 (Balb/c mouse)를 이용하였다. 미정맥 (tail vein)을 통해 생리식염수 또는 비항응고성 헤파린 (50 mg/kg)을 투여한 직후에 내독소를 복강으로 투여하거나 (1 mg/kg), 심장천자를 통해 총 혈액의 1/3 정도로 제거하여 출혈성 쇼크를 유도하여 급성폐손상을 유발하였다. 내독소 투여 또는 출혈성 쇼크 유발 1 시간 후에 흰쥐를 희생시키고 폐를 적출하였고, 폐의 염증성 변화는 사이토카인 ($TNF-{\alpha}$, MIP-2, $IL-1{\beta}$)을 측정하여 살펴보았고, 폐손상의 정도는 myeloperoxidase (MPO) assay와 wet-to-dry weight ratio를 측정하여 알아보았다. 결 과 : 내독소를 투여한 흰쥐의 폐에서 대조군의 폐에 비해 사이토카인의 발현이 증가하고 ($TNF-{\alpha}$; $196.1{\pm}10.8$ vs $83.7{\pm}18.4pg/ml$, MIP-2; $3,000{\pm}725$ vs $187{\pm}26pg/ml$, $IL-1{\beta}$; $6,500{\pm}1167$ vs $266{\pm}25pg/ml$, p<0.05, respectively), 폐의 MPO 활성이 증가하였다 ($27.9{\pm}6.2$ vs $10.5{\pm}2.3U/g$ of lung protein, p<0.05). 출혈성 쇼크를 일으킨 흰쥐의 폐에서 대조군의 폐에 비해 사이토카인의 발현은 증가되지 않았으나, MPO 발현은 증가되었다 ($16.5{\pm}3.2$ vs $10.5{\pm}2.3U/g$ of lung protein, p<0.05). 내독소 투여 또는 출혈성 쇼크에 의해 급성폐손상이 유발된 흰쥐에서 생리적 식염수를 투여하거나 비항응고성 헤파린을 투여한 군 사이에 사이토카인의 발현이나 MPO 활성에 의미있는 차이는 관찰되지 않았다. 결론 : 이상의 결과로 비항응고성 헤파린은 내독소를 투여하거나 출혈성 쇼크를 일으키고 한 시간 뒤에 측정한 흰쥐의 급성폐손상에서 의미있는 치료효과를 보이지 않았다.

키워드

참고문헌

  1. Repine JE. Scientific perspectives on adult respiratory distress syndrome. Lancet 1992;339:466-9 https://doi.org/10.1016/0140-6736(92)91067-I
  2. Kollef MH, Schuster DP. The acute respiratory distress syndrome. N Engl J Med 1995;332:27-37 https://doi.org/10.1056/NEJM199501053320106
  3. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342:1334-49 https://doi.org/10.1056/NEJM200001063420109
  4. Chollet-Martin S, Jourdain B, Gibert C, Elbim C, Chastre J, Gougerot-Pocidalo MA. Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. Am J Respir Crit Care Med 1996;154:594-601 https://doi.org/10.1164/ajrccm.154.3.8810592
  5. Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, et al. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 1996;154:602-11 https://doi.org/10.1164/ajrccm.154.3.8810593
  6. Suter PM, Suter S, Girardin E, Roux-Lombard P, Grau GE, Dayer JM. High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase, in patients with adult respiratory distress syndrome after trauma, shock, or sepsis. Am Rev Respir Dis 1992;145:1016-22 https://doi.org/10.1164/ajrccm/145.5.1016
  7. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhageor endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2000;279:L1137-45 https://doi.org/10.1152/ajplung.2000.279.6.L1137
  8. Parsey MV, Tuder RM, Abraham E. Neutrophils are major contributors to intraparenchymal lung IL-1 beta expression after hemorrhage and endotoxemia. J Immunol 1998;160:1007-13
  9. Shenkar R, Abraham E. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein. J Immunol 1999;163:954-62
  10. Xing Z, Jordana M, Kirpalani H, Driscoll KE, Schall TJ, Gauldie J. Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute lung inflammation. Am J Respir Cell Mol Biol 1994;10:148-53 https://doi.org/10.1165/ajrcmb.10.2.8110470
  11. Jaques LB. Heparins: anionic polyelectrolyte drugs. Pharmacol Rev 1979;31:99-166
  12. Rao NV, Kennedy TP, Rao G, Ky N, Hoidal JR. Sulfated polysaccharides prevent human leukocyte elastase- induced acute lung injury and emphysema in hamsters. Am Rev Respir Dis 1990;142:407-12 https://doi.org/10.1164/ajrccm/142.2.407
  13. Weiler JM, Edens RE, Linhardt RJ, Kapelanski DP. Heparin and modified heparin inhibit complement activation in vivo. J Immunol 1992;148:3210-5
  14. Hocking DC, Ferro TJ, Johnson A. Dextran sulfate inhibits PMN-dependent hydrostatic pulmonary edema induced by tumor necrosis factor. J Appl Physiol 1991;70:1121-8 https://doi.org/10.1063/1.349617
  15. Skinner MP, Lucas CM, Burns GF, Chesterman CN, Berndt MC. GMP-140 binding to neutrophils is inhibited by sulfated glycans. J Biol Chem 1991;266: 5371-4
  16. Ley K, Cerrito M, Arfors KE. Sulfated polysaccharides inhibit leukocyte rolling in rabbit mesentery venules. Am J Physiol 1991;260:H1667-73
  17. Simon RH, DeHart PD, Todd RF 3rd. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells. J Clin Invest 1986;78:1375-86 https://doi.org/10.1172/JCI112724
  18. Inoue Y, Nagasawa K. Selective N-desulfation of heparin with dimethyl sulfoxide containing water or methanol. Carbohydr Res 1976;46:87-95 https://doi.org/10.1016/S0008-6215(00)83533-8
  19. Fryer A, Huang YC, Rao G, Jacoby D, Mancilla E, Whorton R, et al. Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J Pharmacol Exp Ther 1997;282:208-19
  20. Thourani VH, Brar SS, Kennedy TP, Thornton LR, Watts JA, Ronson RS, et al. Nonanticoagulant heparin inhibits NF-kappaB activation and attenuates myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 2000;278:H2084-93 https://doi.org/10.1152/ajpheart.2000.278.6.H2084
  21. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-10 https://doi.org/10.1097/00003246-200107000-00002
  22. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-54 https://doi.org/10.1056/NEJMoa022139
  23. Rainer TH, Lam PK, Wong EM, Cocks RA. Derivation of a prediction rule for post-traumatic acute lung injury. Resuscitation 1999;42:187-96 https://doi.org/10.1016/S0300-9572(99)00089-1
  24. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159-63 https://doi.org/10.1056/NEJM198501173120305
  25. Deitch EA. Multiple organ failure: pathophysiology and potential future therapy. Ann Surg 1992;216:117-34 https://doi.org/10.1097/00000658-199208000-00002
  26. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS): a prospective study. JAMA 1995;273:117-23 https://doi.org/10.1001/jama.273.2.117
  27. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 1997; 278:234-40 https://doi.org/10.1001/jama.278.3.234
  28. Ayala A, Perrin MM, Meldrum DR, Ertel W, Chaudry IH. Hemorrhage induces an increase in serum TNF which is not associated with elevated level of endotoxin. Cytokine 1990;2:170-4 https://doi.org/10.1016/1043-4666(90)90012-I
  29. Hierholzer C, Kalff JC, Omert L, Tsukada K, Loeffert JE, Watkins SC, et al. Interleukin-6 production in hemorrhagic shock is accompanied by neutrophil recruitment and lung injury. Am J Physiol 1998;275:L611-21
  30. Friedrichs GS, Kilgore KS, Manley PJ, Gralinski MR, Lucchesi BR. Effects of heparin and N-acetyl heparin on ischemia/reperfusion-induced alterations in myocardial function in the rabbit isolated heart. Circ Res 1994;75:701-10 https://doi.org/10.1161/01.RES.75.4.701
  31. Black SC, Gralinski MR, Friedrichs GS, Kilgore KS, Driscoll EM, Lucchesi BR. Cardioprotective effects of heparin or N-acetylheparin in an in vivo model of myocardial ischaemic and reperfusion injury. Cardiovasc Res 1995;29:629-36 https://doi.org/10.1016/S0008-6363(96)88632-9