DOI QR코드

DOI QR Code

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks

점성균열 모델을 위한 국부단위분할이 적용된 무요소법

  • 지광습 (고려대학교 사회환경시스템공학과) ;
  • 정진규 (고려대학교 사회환경시스템공학과) ;
  • 김병민 (고려대학교 사회환경시스템공학과)
  • Received : 2006.03.07
  • Accepted : 2006.05.15
  • Published : 2006.09.30

Abstract

The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.

본 연구에서는 이차원 연속체에 존재하는 점성균열을 무요소법에서 국부 단위분할 원리에 근거하여 정식화하였다. 균열이 한 절점의 영향영역(domain of influence)을 완전히 통과하는 경우 그 절점의 형상함수는 계단함수로 확장되고, 균열 끝이 영향영역 내에 위치하는 경우 특이성이 제거된 가지함수(branch function)로 확장된다. 이러한 해의 영역의 확장은 국부 단위분할 원리를 만족하는 변위계에서만 이루어지므로, 약형 정식화는 표준 Galerkin방법에 의해서 얻어진다. 균열과 상호작용하는 영향영역만 확장되기 때문에, 성긴 형태의 시스템의 행렬을 유지하게 된다. 그러므로 확장에 의해 발생하는 계산비용의 증가는 최소화된다. 동적인 문제에서 균열성장에 관한 조건은 재료안정론으로부터 얻어졌다. 즉, 재료 한 점에서 어느 방향으로든 변형열화가 집중하게 되면, 그 방향에 점성균열을 삽입하여 연속체가 비연속체로 되도록 하였다. 균열의 성장속도도 같은 조건으로부터 자연스럽게 얻어졌다. 전통적인 무요소법보다 더 나은 정확도와 빠른 수렴성을 보이는 것이 확인되었으며, 이 기법의 적용성을 보이기 위해 잘 알려진, 정적 및 동적문제에 적용하였다.

Keywords

References

  1. Areias, P.M.A. and Belytschko, T. (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. international journal for numerical methods in engineering, Vol. 63, No. 5, pp. 760-788 https://doi.org/10.1002/nme.1305
  2. Armero, F. and Garikipati, K. (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, Vol. 33, No. 20-22, pp. 2863-2885
  3. Belytschko, T. and Black, T. (1999) Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, pp. 601-620 https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  4. Belytschko, T. and Lu, Y.Y. (1995) Element-free galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, Vol. 32, pp. 2547-2570 https://doi.org/10.1016/0020-7683(94)00282-2
  5. Belytschko, T. and Tabbara, M. (1996) Dynamic fracture using element-free galerkin methods. International Journal for Numerical Methods in Engineering, Vol. 39, No. 6, pp. 923-938 https://doi.org/10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
  6. Belytschko, T. Chen, H. Xu, J., and Zi, G. (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. International Journal for Numerical Methods in Engineering, Vol. 58, No. 12, pp. 1873-1905 https://doi.org/10.1002/nme.941
  7. Belytschko, T. Lu, Y.Y., and Gu, L. (1995) Crack propagation by element-free galerkin methods. Engineering Fracture Mechanics, Vol. 51, No. 2, pp. 295-315 https://doi.org/10.1016/0013-7944(94)00153-9
  8. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996) Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 3-47 https://doi.org/10.1016/S0045-7825(96)01078-X
  9. Belytschko, T., Lu, Y.Y., and Gu, L. (1994) Element-free galerkin methods. International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256 https://doi.org/10.1002/nme.1620370205
  10. Bocca, P., Carpintieri, A., and Valente, S. (1990) Size effect in the mixed mode crack propagation: softening and snap-back analysis. Engineering Fracture Mechanics, Vol. 35, pp. 159-170 https://doi.org/10.1016/0013-7944(90)90193-K
  11. Camacho, G. T. and Ortiz, M. (1996) Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures, Vol. 33, pp. 2899-2938 https://doi.org/10.1016/0020-7683(95)00255-3
  12. Daux, C., Moes, N., Dolbow, N., Sukumar, N., and Belytschko, T. (2000) Arbitrary branched and intersection cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, Vol. 48, pp. 1731-1760
  13. Falk, M.L. Needleman, A., and Rice, J.R. (2001) A critical evaluation of cohesive zone models of dynamic fracture. Journal of Physics IV, Vol. 11, No. PR5, pp. 43-50
  14. Fineberg, J., Sharon, E., and Cohen, G. (2003) Crack front waves in dynamic fracture. International Journal of Fracture, Vol. 121, No. 1-2, pp. 55-69 https://doi.org/10.1023/A:1026296929110
  15. Gravouil, A., Moes, N., and Belytschko, T. (2002) Non-planar 3D crack growth by the extended finite element and level sets - part ii: Level set update. International Journal for Numerical Methods in Engineering, Vol. 53, pp. 2569-2586 https://doi.org/10.1002/nme.430
  16. Johnson, G.R. and Cook, W.H. (1983) A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. Proc. 7th International Symp. Ballistics
  17. Kalthoff, J.F. and Winkler, S. (1987) Failure mode transition at high rates of shear loading. International Conference on Impact Loading and Dynamic Behavior of Materials, Vol. 1, pp. 185-195
  18. Krysl, P. and Belytschko, T. (1999) The element free galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numericwjfwja Methods in Engineering, Vol. 44, No. 6, pp. 767-800 https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
  19. Lemaitre, J. (1971) Evaluation of dissipation and damage in metal submitted to dynamic loading. Proceedings ICM 1
  20. Li, S., Liu, W.K, Rosakis, A.J, Belytschko, T., and Hao, W. (2002) Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition. International journal of solids and structures. Vol. 39, No. 5, pp. 1213-1240 https://doi.org/10.1016/S0020-7683(01)00188-3
  21. Lu, Y.Y. Belytschko, T., and Tabbara, M. (1995) Element-free galerkin method for wave-propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, Vol. 126, No. 1-2, pp. 131-153 https://doi.org/10.1016/0045-7825(95)00804-A
  22. Moes, N., Dolbow, J., and Belytschko, T. (1999) A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, pp. 133-150
  23. Moes, N., Gravouil, A., and Belytschko, T. (2002) Non-planar 3-D crack growth by the extended finite element method and level sets, parti: Mechanical model. International Journal for Numerical Methods in Engineering, Vol. 53, No. 11, pp. 2549-2568 https://doi.org/10.1002/nme.429
  24. Ortiz, M. and Pandolfi, A. (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, Vol. 44, pp. 1267-1282 https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  25. Rabczuk, T. and Belytschko, T. (2004) Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316-2343 https://doi.org/10.1002/nme.1151
  26. Ravi-Chandar, K. (1998) Dynamic fracture of nominally brittle materials. International Journal of Fracture, Vol. 90, No. 1-2, pp. 83-102 https://doi.org/10.1023/A:1007432017290
  27. Saehn, S. Technische Bruchmechanik, Vorlesungsmanuskript. Technische Universitaet Dresden, Institut fuer Festkoerpermechanik
  28. Samaniego, E., Oliver, X., and Huespe, A. (2003) Contributions to the Continuum Modelling of Strong Discontinuities in Two-Dimensional Solids. PhD thesis, International Center for Numerical Methods in Engineering, Monograph CIMNE No. 72, Barcelona, Spain
  29. Sharon, E. and Fineberg, J. (1996) Microbranching instability and the dynamic fracture of brittle materials. Physical Review B, Vol. 54, No. 10, pp. 7128-7139 https://doi.org/10.1103/PhysRevB.54.7128
  30. Ventura, G., Xu, J., and Belytschko, T. (2002) A vector level set method and new discontinuity approximations for crack growth by efg. International Journal for Numerical Methods in Engineering, Vol. 54, No. 6, pp. 923-944 https://doi.org/10.1002/nme.471
  31. Westergaard, H.M. (1939) Bearing pressures and cracks. Journal of Applied Mechanics, A49-A53
  32. Xu, X.-P. and Needleman, A. (1994) Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, Vol. 42, pp. 1397-1434 https://doi.org/10.1016/0022-5096(94)90003-5
  33. Zhou, F. and Molinari, J.F. (2004) Dynamic crack propagation with cohesive elements: a methodolgy to address mesh dependence. International Journal for Numerical Methods in Engineering, Vol. 59, No. 1, pp. 1-24 https://doi.org/10.1002/nme.857
  34. Zi, G. and Belytschko, T. (2003) New crack-tip elements for xfem and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, Vol. 57, No. 15, pp. 2221-2240 https://doi.org/10.1002/nme.849
  35. Zi, G., Chen, H., Xu, J., and Belytschko, T. (2005) The extended finite element method for dynamic fractures. Shock and Vibration, Vol. 12, No. 1, pp. 9-23 https://doi.org/10.1155/2005/729090
  36. Zi, G., Song, J.-H., Budyn, E., Lee, S.-H., and Belytschko, T. (2004) A method for grawing multiple cracks without remeshing and its application to fatigue crack growth. Modelling and Simulation in Materials Science and Engineering, Vol. 12, No. 1, pp. 901-915 https://doi.org/10.1088/0965-0393/12/5/009