DOI QR코드

DOI QR Code

온도와 FA 농도가 암모늄 이온의 아질산 전환에 미치는 영향

Effect of Temperature and FA Concentration on the Conversion of Ammonium to Nitrite

  • 김정훈 (울산대학교 청정자원순환연구센터) ;
  • 송영채 (한국해양대학교 토목환경시스템공학부) ;
  • 박흥석 (울산대학교 건설환경공학부)
  • 투고 : 2006.03.29
  • 심사 : 2006.04.24
  • 발행 : 2006.07.31

초록

생물학적 질산화 과정에서 비이온성 용존 암모나아(FA) 농도와 온도가 아질산 이온($NO_2{^-}$) 축적에 미치는 영향을 연구하였다. 암모늄 산화와 아질산 축적조건을 파악하기 위하여 암모늄 이온($NH_4{^-}$) 농도와 온도를 탈리한 다양한 FA 농도 조건에서 질산화 실험을 실시하였다. 암모늄산화균과 아질산산화균의 활성화에너지를 산정한 결과, 암모늄산화균의 활성화에너지는 $20^{\circ}C$ 이하에서 81.7 KJ/mol, $20^{\circ}C$ 이상에서는 32.5 KJ/mol로 차이가 있었으나, 아질산산화균의 활성화에너지는 온도에 관계없이 35.5 KJ/mol로 나타났다. 특히, FA 농도와 온도에 따른 질산화 실험결과, FA 농도에 의한 질산화 저해 및 아질산이온 축적 효과는 극히 미미하였으며, 온도조건이 아질산 이온 축적에 큰 영향을 미치는 것으로 나타났다.

The effects of free ammonia (FA) concentration and temperature on nitrite accumulation were studied. To estimate the most effective ammonium oxidation and nitrite build-up condition, nitrification tests were conducted in batch conditions at various FA concentrations, and at different ammonium concentration and temperature. The activation energies of ammonium oxidizer were 81.7 KJ/mol below $20^{\circ}C$, and 32.5 KJ/mol over $20^{\circ}C$, while that of nitrite oxidizer was 35.5 KJ/mol irrespective of temperature variations. The results of nitrification tests conducted at different FA concentrations and temperatures showed that temperature strongly affects nitrite accumulation, while effects due to FA concentrations were found negligible.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. 박종호, 이원호, 연익준, 조규석(2004) 순환여과시스템에서 온도가 질산화 반응에 미치는 영향, 한국수산학회지, 한국수산학회, 제37권 제1호, pp. 13-17
  2. 원성연(1999) 질산화반응에 미치는 환경인자의 영향, 박사학위논문, 충북대학교
  3. 최지행, 이용우, 윤주환(2001) 생물학적 아질산-아탈질을 이용한 슬러지 처리공정 반류수 내 고농도 질소 제거, 대한환경공학회지, 대한환경공학회, 제24권 제3호, pp. 371-381
  4. Abeling, U. and Seyfried, C.F. (1992) Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite, Wat. Sci. Tech., Vol. 26(5-6), pp. 1007-1015
  5. Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., and Srinath, E.G (1976) Inhibition of nitrification by ammonia and nitrous acid, J. Wat. Pollut. Control Fed., Vol. 48, pp. 835-852
  6. Balmelle, B., Nguyen, M., Capdeville, B., Cornier, J.C, and Deguin, A. (1992) Study of factors controlling nitrite build-up in biological processes for water nitrification, Wat. Sci. Tech., Vol. 26(5-6), pp. 1017-1025
  7. Cecen, F. and Gonene, I.E. (1994) Nitrogen removal characteristics of nitrification and denitrification filter, Wat. Sci. Tech., Vol. 29(10-11), pp. 409-416
  8. Ford, D.L., Churchwell, R.L., and Kachtick, J.W. (1980) Comprehensive analysis of nitrification of chemical processing wastewater, J. Wat. Pollut. Control Fed, Vol. 52(11), pp. 2726-2746
  9. Hanaki, K., Wantawin, C, and Ohgaki, S. (1990) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor, Wat. Res., Vol. 24, pp. 297-302 https://doi.org/10.1016/0043-1354(90)90004-P
  10. Hellinga, C, Schellen, A.A.J.C, Mulder, J.W., Van Loosdrecht M.C.M., and Heijnen, J.J. (1998) The SHARON process: An innovative method for nitrogen removal from ammonium-rich wastewater, Wat. Sci. Tech., Vol. 37, pp. 135-142
  11. Henze, M., Grady, C.P.L., Gujer, W., Marais, Gv.R., and Matsuo, T. (2000) Activated sludge model No. 1, IAWPRC Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, pp. 5-25
  12. Mauret, M., Paul, E., Puech-Costes, E., Maurette, M.R., and Bap-tiste, P. (1996) Application of experimental research methodology to the study of nitrification in mixed culture, Wat. Sci. Tech., Vol. 34(1-2), pp. 245-252
  13. Quinlan, A.V (1980) The thermal sensitivity of nitrification as a function of the concentration of nitrogen substrate, Wat. Res., Vol. 14, pp. 1501-1507 https://doi.org/10.1016/0043-1354(80)90016-0
  14. Skinner, F.A. and Walker, N. (1961) Growth of nitrosomonas euro-paea in batch and continuous culture, Arch. Microbiol, Vol. 38, pp. 330-339
  15. Turk, O. and Mavinic, D.S. (1986) Preliminary assessment of a shortcut in nitrogen removal from wastewater, Can. J. Civ. Eng, Vol. 13, pp. 600-605 https://doi.org/10.1139/l86-094
  16. Turk, O. and Mavinic, D.S. (1987) Selective inhibition: a novel concept for removing nitrogen from highly nitrogenous wastes, Envir. Tech. Lett., Vol. 8, pp. 419-426 https://doi.org/10.1080/09593338709384500
  17. Wong-Chong, GM. and Loehr, R.C. (1978) Kinetics of microbial nitrification: Nitrite nitrogen oxidation, Wat. Res., Vol. 12, pp. 605-609 https://doi.org/10.1016/0043-1354(78)90140-9
  18. Yang, L. and Alleman, J.E. (1992) Investigation of batch wise nitrite build-up by an enriched nitrification culture, Wat. Sci. Tech.., Vol. 26(5-6), pp. 997-1005