DOI QR코드

DOI QR Code

만곡수로에서 흐름방향에 따른 2차류의 변화량 산정식

New Equation on Streamwise Variation of Secondary Flow in Meandering Channels

  • 백경오 (한국건설기술연구원) ;
  • 서일원 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 이규환 (현대중공업)
  • 투고 : 2006.01.26
  • 심사 : 2006.06.14
  • 발행 : 2006.07.31

초록

본 연구에서는 만곡수로에서 주 흐름방향에 따라 변화하는 2차류의 거동을 이론적으로 예측하기 위해 Odgaard(1986) 및 Chang(1988)의 제안을 바탕으로 새로운 방정식을 유도하였다. 개발된 이론식은 2차류의 횡방향 유속을 주 흐름 및 연직방향의 함수로 표현한다. 이를 검증하기 위해 실험실에 사행도가 각기 다른 두 개의 만곡수로를 제작하여 수리실험을 수행하였다. 수리실험결과를 제안된 이론식 및 기존 식과 비교해 보면, 제안된 식은 실측치에 잘 일치하는 반면 기존 식은 과대 산정하는 경향이 있었다. 제안된 이론식을 통해 수리량이 변화는 경우 2차류가 어떻게 변하는지를 확인해 본 결과, 사행도, 조도, 하폭 대 수심비가 클수록 2차류는 증가하였다. 또한 조도 및 하폭 대 수심비의 변화에 따라 2차류의 흐름방향 분포가 민감하게 반응하였다.

In this study, a theoretical equation was derived based on Odgaard (1986) and Chang (1988) to reveal the streamwise variation of the secondary flow in meandering channels. The new equation describes the transverse component of the secondary flow as a function of streamwise and vertical directions. To validate the proposed equation, hydraulic experiments were conducted in laboratory meandering channels having different sinuosity. Comparison of experimental results with the proposed equation and an existing equation revealed that the equation was in good agreement with the measured data. However, the existing equation overestimated the transverse velocity. Investigation of the variation of the secondary flow with respect to hydraulic parameters based on the new equation showed that the secondary flow tended to increase as the sinuosity, the roughness, and the aspect ratio became larger. Also, streamwise profile of the secondary flow was sensitive to variations of the roughness and the aspect ratio.

키워드

과제정보

연구 과제번호 : RAMS 개발

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. 백경오, 서열원, 정성진(2005) 사행수로에서 순간 주입된 오염물질의 2차원 혼합: I. 실험 연구, 대한토목학회논문집, 대한토목학회, 제25권 제6B호, pp. 451-461
  2. 서일원, 성기훈, 백경오, 정성진(2004) 사행수로에서 흐름특성에 관한 설험적 연구, 한국수자원학회 논문집, 한국수지원학회, 제37권 제7호, pp. 527-540
  3. 이두한, 이찬주, 김병환(2005) 복단변 사행 하도의 흐름특성에 대한 실험 연구, 대한토목학회논문집, 대한토목학회, 제25호 제3B호, pp. 197-206
  4. Almquist, C.W. and Holley, E.R. (1985) Transverse mixing in meandering laboratory channels with rectangular and naturally varying cross sections. Technical Report CRWR-205, Univ. of Texas, Austin, Texas
  5. Baek, K.O. (2004). Transverse Mixing in Meandering Channels with Unsteady Pollutant Source. PhD thesis, Seoul National University, Korea
  6. Blanckaert, K. (2001) A model for flow in strongly curved channel bends. Proc. 29th IAHR Congress, Beijing, China
  7. Blanckaert, K., Glasson, L., Altinakar, M., Jagers, H.R.A., and Sloff, C.J. (2003) A quasi-3D model for flow in sharp open-channel bends. Proc. 30th IAHR Congress, Thessaloniki, Greece
  8. Blanckaert, K. and Graf, W.H. (2004) Momentum transport in sharp open-channel bends. J. Hydraul. Eng, Vol. 130, No. 3, pp. 186-198 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(186)
  9. Blanckaert, K. and Vriend, H.J. (2003) Nonlinear modelling of flow redistribution in curved open channel. Water Resour. Res., Vol. 39, No. 12, pp. 1375 https://doi.org/10.1029/2003WR002068
  10. Blanckaert, K. and Vriend, H.J. (2004) Secondary flow in sharp open-channel bends. J Fluid Mech., 498, pp. 353-380 https://doi.org/10.1017/S0022112003006979
  11. Chang, H.H. (1984) Variation of flow resistance through curved channels. J. Hydraul. Eng. Vol. 110, No. 12, pp. 1772-1782 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1772)
  12. Chang, H.H. (1988) Fluvial processes in river engineering. John Wiley & Sons, Inc., N.Y
  13. Demuren, A.O. and Rodi, W. (1986) Calculation of flow and pollutant dispersion in meandering channels. J. Fluid Mech, 172, pp. 63-92 https://doi.org/10.1017/S0022112086001659
  14. Engelund, F. (1974) Flow and bed topography in channel bends. J. Hydraul. Div, Am. Soc. Civ. Eng, Vol. 100, No. 11, pp. 1631-1648
  15. Falcon-Ascanio, M. and Kennedy, J.F. (1983) Flow in alluvial-river curves. J. Fluid Mech,, 133, pp. 1-16 https://doi.org/10.1017/S0022112083001755
  16. Henderson, F.M. (1966) Open channel flow. Macmillan Publishing Co., N.Y
  17. Johannesson, H. and Parker, G (1989) Secondary flow in mildly sinuous channel. J. Hydraul. Eng, Vol. 115, No. 3, pp. 289-308 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:3(289)
  18. Kikkawa, H., Ikeda, S., and Kitagawa, A. (1976) Flow and bend topography in curved open channels. J. Hydraul. Div., Am. Soc. Civ. Eng.. Vol. 102, No. 9, pp. 1327-1342
  19. Naot, D. and Rodi, W. (1982) Calculation of secondary currents in channel flow. J. Hydraul. Div, Am. Soc. Civ. Eng., Vol. 108, No. 8, pp. 948-968
  20. Odgaard, A.J. (1986) Meander-flow model I: development. J. Hydraul. Eng. Vol. 112, No. 12, pp. 1117-1136 https://doi.org/10.1061/(ASCE)0733-9429(1986)112:12(1117)
  21. Rozovskii, I.L. (1957) Flow of water in bends of open channels. Academy of Science of Ukrainian SSR, Russia
  22. Schlichting, H. (1968) Boundary-layer theory, McGraw-Hill, N.Y
  23. Shiono, K. and Muto, Y. (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J. Fluid Mech. 376, pp. 221-261 https://doi.org/10.1017/S0022112098002869
  24. von Karman, T. (1934) Turbulence and skin friction. J. Aeronautical Science, Vol. 1, No. 1, pp. 1-20 https://doi.org/10.2514/8.5
  25. Vriend, H.J. (1977) A mathematical model of steady flow in curved shallow channels. J. Hydraul. Res., Vol. 15, No. 1, pp. 37-54 https://doi.org/10.1080/00221687709499748
  26. Yen, C.L. (1970) Bed topography effect on flow in a meander. J. Hydraul. Div., Am. Soc. Civ. Eng, Vol. 96, No. 1, pp. 57-73